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Abstract

This paper explores US foster parent licensing, essential for placing fos-
ter children. We develop a theoretical matching model to study the opti-
mal menu of licenses designed to screen foster parents, considering hetero-
geneous agents, adverse selection, and search frictions. Our findings high-
light the following: (i) optimal allocation calls for a segregation of the mar-
ket, (ii) simple transfer schedules achieve the purpose, (iii) complemen-
tarities do not ensure Positive Assortative Matching (PAM) in equilibrium.
We provide conditions that guarantee PAM. Our results suggest that the cur-
rent licensing menu partly aligns with optimal solutions but may fall short in
screening.
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1 Introduction

Foster care can be viewed as a two-sided matching market with heterogeneous
children and parents, where foster parents have preferences over children, and
child welfare agencies have preferences over foster parents (on behalf of chil-
dren).1 As in many other markets, matches form in the presence of private in-
formation, since a foster parent’s ability to provide care for a child is unknown
to the child welfare agency. Aiming at solving for this adverse selection problem,
a menu of licenses is offered to foster parents. In practice, a license specifies the
type of child a parent can foster and the corresponding transfer received by foster
parents. Furthermore, as a rule of thumb, children are grouped by the level of
care needed, and transfers vary across groups. For example, foster parents in Ari-
zona can choose between two licenses: traditional and therapeutic. In the former,
foster parents can only foster children with standard needs, whereas in the lat-
ter foster parents can foster children with standard needs and also children with
special needs. Parents receive US$20.80 per day for children with standard needs,
and US$36.87 for children with special needs. These transfers are based only on
the estimated cost of providing care for a child, and do not depend on any other
characteristic of the market. This raises the question of whether the current menu
of licenses can achieve its screening objective, and more importantly, whether the
current mechanism used in the system is optimal.

This paper develops a theoretical matching model to study the optimal menu
of licenses designed to screen foster parents in the US foster care system. We con-
struct a two-sided matching model with heterogeneous agents (children differ in
the level of care needed and parents differ in their ability to provide care), pri-
vate information on a parent’s attribute, and a designer who coordinates match
formation through a menu of contracts.2 The main innovation of our paper lies
in introducing an endogenous search friction that varies with market size, an ele-
ment not entirely within the designer’s control. The analysis focuses on incentive-
compatible licenses, which specify an allocation of parents across submarkets of
children and the corresponding transfers, and the sorting patterns thatmight arise
in equilibrium.

Our results suggests that the menu of licenses used in practice exhibits some
of the properties of the optimal solution. First, we find that it is never optimal to
randomly match all types of parents to all types of children, that is, optimal allo-

1See Appendix A for a detailed description of foster care in the US.
2Our environment can be used to analyze a matching problem between adoptive children and

prospective adoptive parents, provided that the designer offers a subsidy to the adoptive parents.
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cation calls for a segregation of the market. Second, we show that a simple trans-
fer schedule achieves the purpose, that is, parents holding different licenses and
providing care for the same type of child can receive the same monetary transfer.
However, the transfersmust not only account for the child’s attribute as in practice,
but also for other features of the market such as the distributions of agents. Lastly,
we find that complementarity in child’s and parent’s attributes is not sufficient to
ensure that Positive Assortative Matching (PAM) will arise in equilibrium. Thus,
we provide sufficient conditions for the equilibrium sorting to exhibit PAM: either
a stronger complementarity determined by the distribution of children’ attributes,
or a lower bound on the share of children with special needs.3

Themodel is as follows. There are two sides of the market populated by a con-
tinuum of agents: children and parents. Children are heterogeneous in the level
of care needed, low- (x1) or high-needs (x2); and parents are heterogeneous in
their ability to provide care, low-(y1) or high-ability (y2). We start our analysis
with this binary type space for parents, which we later extend to a continuum of
types. A child’s attribute is common knowledge, and a parent’s attribute is pri-
vate information. We assume that children receive greater payoffs when matched
than unmatched, and parents incur a costwhen amatch forms. The designermax-
imizes expected utility from children minus transfers to parents. We assume that
the surplus of each match is nonnegative, thus profitable.4 As in practice, we con-
struct submarkets for each child’s attribute, that is, there is a submarket populated
by low-needs children and another submarket populated by high-needs children.

First, the designer announces and commits to a menu of licenses. A license
specifies: (1) a randomization rule that determines the probability with which a
parent is allocated into each submarket, and (2) a corresponding transfer when a
match forms. After observing the menu, each parent chooses a license. Next,
the randomization device is realized and parents are allocated across submar-
kets5 determining endogenously the parents-to-children ratio (market tightness)
for each submarket. Lastly, within each submarket, meetings take place, matches
are formed, and transfers occur. We introduce a search friction by assuming that
meetings are not certain, that is, the probability of a child (parent) meeting a par-
ent (child) is represented by a meeting technology which is a function of the mar-

3Ideally, we would empirically test our theoretical predictions on optimal sorting patterns, but
this is not feasible due to limited data on parents’ attributes.

4In our framework, surplus of a match is a cost-net benefit function whose argument are par-
ent’s ability and child’s level of care needed.

5We use the language of allocation across submarkets, but it can also be interpreted as the
weight the designer assigns to a specific parent holding a particular license to provide care for one
type of child or another.
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ket tightness. Thus, when parents choose a license that guarantees allocation to a
specific submarket with probability one, they are certain about the type of child
they will be matched with but remain uncertain about whether the match will oc-
cur. However, if a parent selects a license that allocates them to either submarket
with a strictly positive probability, they face uncertainty not only about the type
of child they will be matched with but also whether a match will take place.

Our search friction assumption ismotivated by the fact that childwelfare agen-
cies do not act as matchmakers but instead define feasible matches through a
menu of licenses and guidelines. In practice, social workers are responsible for
contacting parents about a specific child in a decentralized manner. Thus, the
randomization mechanism can be interpreted as a guideline: for example, if a
parent is deemed ’better’ suited to care for low-needs children than high-needs
children, the system would aim to allocate that parent to the first submarket with
a higher probability. Furthermore, market tightness captures the level of conges-
tion in the market, while the meeting technology accounts for the frictions arising
from the decentralized nature of the matching process which strongly depends
on the congestion.

It is important to emphasize that the search friction assumption is a crucial ele-
ment of ourmodel, as it introduces non-trivial effects on the analysis.6 Specifically,
when amass of type-y parents is reallocated from one submarket to another, three
key effects occur: (i) Surplus Effect: This represents the change in total expected
surplus of the market. (ii) Congestion Effect: The change in market tightness in the
submarket where parents are reallocated, leading to a thicker market. (iii)Decon-
gestion Effect: The change inmarket tightness in the submarket fromwhich parents
are reallocated, resulting in a thinner market. These effects not only add complex-
ity to the analysis but also enrich the predictions of our model.

We begin by examining the case with complete information and derive results
for both super- and sub-modular surplus functions. In this section, we focus on
the case of super-modularity, while the discussion of sub-modularity is deferred
to the main body of the paper.

First, we find that it is never optimal for the designer to allocate type-y par-
ents to both submarkets x1 and x2 with strictly positive probability, regardless of

6Our paper is closely related to the work of Damiano and Li (2007), which explores how a
monopoly matchmaker sorts agents into exclusive meeting places for random pairwise matching.
A key assumption in their framework is that all agents have a constant match probability of one,
abstracting from size effects that could influence matching probabilities based on market scale.
In contrast, our paper incorporates market size effects through the search friction assumption,
illustrating how market size influences matching probabilities.
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whether the surplus function is supermodular or submodular.7 This result ratio-
nalizes the nested nature of the licenses used in practice, such as the case of the
state of Arizona described above.

Second, we show that super-modularity is neither sufficient nor necessary for
the optimal sorting to exhibit PAM. In our framework, the randomization device
establishes who can match with whom in the market so we use it to define sorting
patterns: a sorting exhibits PAM (NAM) if y2-parents are allocated to submarket
x2 with a greater (smaller) probability than y1-parents are.8 For a frictionless en-
vironment with a super-modular surplus function, it is well known that matching
agents in a positive assortative waymaximizes total welfare (Becker, 1973). How-
ever, when search frictions are introduced, we find that this result does not hold
because the expected total welfare, calculated using the meeting technologies in
each submarket, is not necessarily super-modular even if the surplus function is
super-modular. By imposing a lower bound on the fraction of type-x2 children
along with super-modularity, we can ensure that PAM arises in equilibrium. In-
tuitively, type-y2 parents are more desirable in any submarket, thus the designer
would like to allocate them to a more profitable and thicker submarket x2. Thus,
by imposing a lower bound on the share of type-x2 children we ensure that the
market is thick enough.

Third, we find that any transfer scheme that is on the participation constraint
for each type of parent is optimal, and it does not affect the equilibrium sorting.
Therefore, our framework predicts the same equilibrium sorting regardless of in-
terimor ex-post participation constraints. This is intuitive as, in equilibrium, given
a license, parents only care about the expected transfer that equalizes the expected
cost. Moreover, the optimal transfers must account for the child’s attribute, and
other features of the market such as number of children and number of parents.

In this context, one might imagine that the child welfare agency could screen
foster parents using observable characteristics such as race, marital status, edu-
cational level, employment status, or income. Under this scenario, our complete
information analysis would be sufficient. However, the literature suggests that ob-
servable characteristics of foster parents do not predict the likelihood of fostering
higher-needs children, yet the type of license they hold does.9 This motivates our

7In other words, if the optimal randomization rule is interior for type-y parents, then it is a
corner solution for type-y′ parents, where y and y′ are distinct.

8One can equivalently define the sorting pattern through a matching correspondence as stan-
dard in the literature, and say that a sorting exhibits PAM if the matching correspondence is a
lattice as in Shimer and Smith (2000). Since the randomization device provides more information
than the correspondence, our sorting notion is more general: any feasible-unequal allocation of
parents in our setting exhibits either PAM or NAM, but not both, unlike Shimer and Smith (2000).

9Using a sample of 297 foster mothers and a linear multiple regression analyses, Cox et al.
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next analysis relaxing the assumption over the observability of a parent’s attribute.
With private information, our results from complete information carry on, ex-

cept for an additional condition for PAM and the need for the designer to provide
informational rents to high-ability parents. Due to the greater expected cost for
low-ability parents to provide care, the expected transfer they receive is greater
than what high-ability parents receive given the first-best menu of licenses. As
a result, high-ability parents have incentives to mimic low-ability parents, thus
the designer pays information rent to high-ability parents to eliminate such in-
centives.

Now, to determine the optimal sorting, one needs to know the cost of a parent-
child pairing, as well as the parent distribution, which need not be known under
complete information.10 In this case, a super-modular cost function increases the
forces for the equilibrium sorting to be NAM. The intuition is as follows: a super-
modular cost function means that the difference between the cost for low-ability
parents and high-ability parents of taking care of a child with low-needs is greater
than the difference of providing care for a childwith high-needs. Thus, itwould be
more expensive to shut down a deviation by high-type parents from high-needs
children to low-needs children than a deviation from low-needs to high-needs
children. As a result, the designer would pay less information rent if high-ability
parents are allocated into the submarket of childrenwith low-needs. Therefore, to
ensure that PAM emerges in equilibrium and that parents reveal their type truth-
fully, we impose sub-modularity on the cost function and establish a lower bound
on the proportion of type-x2 children.

Lastly, wepresent two significant extensions of our complete informationmodel.
First, we retain the classification of children into high- and low-need categories
while expanding the parental attribute space to a continuum. We find that the
nested hierarchy of licenses observed in the two-type case no longer holds. In-
stead, parents are allocated into a single submarket. Moreover, the optimal pay-
ment now exclusively considers the cost of providing care, aligning more closely
with practical scenarios. Second, we conduct comparative statics on the meeting
technology to assess the robustness of our results, considering potential variations
in the decentralized search process across different Stateswithin theUnited States.

(2011) found no significant association between foster mothers’ observable characteristics—such
as race, marital status, education level, and income—and the likelihood of fostering children with
emotional and behavioral problems.

10Knowing the surplus of a match is sufficient to determine the equilibrium licenses under com-
plete information, we do not need to disentangle utility and the cost to determine the optimal
sorting. This is not the case in the presence of information friction.
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Literature Review. The main contribution of this paper is to develop a theoretical
matching model with adverse selection and search frictions to study the optimal
menu of licenses in the US foster care system. Previous studies have analyzed fos-
ter care as amatchingmarket but with different focuses. For instance, Slaugh et al.
(2015) assesses the Pennsylvania Adoption Exchange program, recommending
improvements for adoption outcomes, while Robinson-Cortés (2019) uses a con-
fidential dataset to analyze child placements and evaluate policy interventions.
Olberg et al. (2021) introduces a dynamic search and matching model with ob-
servable attributes to compare search processes used by child welfare agencies,
and MacDonald (2022) offers an empirical analysis of match transitions, intro-
ducing a model with reversible (foster) and irreversible (adoption) matches. Our
paper stands out by incorporating a menu of licenses into the analysis, provid-
ing a tailored model that addresses key features of foster care, particularly under
conditions of information frictions.

This paper connects to the literature on assortative matching under asym-
metric information, specifically within principal-agent frameworks with adverse
selection. Previous studies, such as Ghatak (1999), Van Tassel (1999), Ghatak
(2000), Guttman (2008) and Altinok (2023), examine sorting patterns in microfi-
nance loan contracts where heterogeneous borrowers are optimally paired. Sim-
ilar to this paper, lenders in these models can induce PAM or NAM. However,
unlike our paper, these studies focus on single-sided markets, without account-
ing for search frictions or the presence of a match coordinator.

Lastly, our paper relates to the search and matching literature, drawing from
frameworks like those of Menzio and Shi (2010a) and Menzio and Shi (2010b)
which introduce submarkets, directed search, and market tightness in labor mar-
kets. Shi (2001) first demonstrated that super-modularity alone is insufficient for
PAM under specific directed search technologies, while Eeckhout and Kircher
(2010) identified stronger complementarity conditions necessary for PAM. Our
model differs by incorporating private information and transfers from the de-
signer to one side of the market. Additionally, Shimer and Smith (2000) and
Smith (2006) explored two-sided matching with random search and complete in-
formation, showing that PAM fails unless stronger complementarity conditions,
like log-supermodularity, aremet. Consistentwith this literature, we demonstrate
that in the presence of search frictions in foster care, stronger complementarities
are needed to achieve PAM. These conditions become even more stringent when
information frictions are incorporated into the model.

Organization of the Paper. The rest of the paper is organized as follows. Section 2
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introduces themodel. Section 3 presents the analysis for the complete information
case, and Section 4 widens the analysis to the case of private information. In Sec-
tion 5, we provide two relevant extensions. Lastly, Section 6 concludes. Appendix
A presents an overview of foster care in the US, while Appendix B illustrates key
examples. All omitted proofs can be found in Appendices C, D, and E.

2 Model

One side of the market is populated by a continuum of children who differ in an
observable attribute x ∈ X = {x1, x2} where x1 denotes a low-needs child (with-
out a disability), x2 denotes a high-needs child (with a disability), and x2 > x1.The
fraction of children with low-needs is f(x1) ∈ [0, 1], whereas the fraction with
high-needs is f(x2) = 1 − f(x1). We refer to the set of children with attribute
x as submarket x. The other side of the market is constituted by a continuum of
parentswho are heterogeneous in their ability to provide care for a child. In par-
ticular, y1 denotes parents with low-ability, y2 denotes parents with high-ability,
and y2 > y1.11 The fraction of parents with low-ability is g(y1) ∈ [0, 1], and that
with high-ability is g(y2) = 1 − g(y1). A parent’s ability to provide care is private
information.

Matches are formed between children and parents on a one-to-one basis.12

There is a designer who facilitates the matching process by offering a menu of
licenses to parents. A license L is represented by a pair (λ, τ)where λ : X → [0, 1]

is a randomization device that determines the probability with which a parent is
allocated to submarket x, and τ : X → R represents a transfer between the de-
signer and the parent if the parent forms a match with child x.13 Throughout the
paper, we restrict attention to themenu of licenses with the following features: (i)
allocations are non-wasteful, that is,

∑
x∈X λ(x) = 1, and (ii) parents have limited

liability, that is, τ(x) ≥ 0 for any x ∈ X .
Figure 1 represents two examples of randomization devices under separate

licenses. Parents holding license L are allocated to submarket x1 with probability
1, and to submarket x2 with probability 0. Analogously, parents holding license
L′ are in submarkets x1 and x2 with probabilities 1/4 and 3/4, respectively.

11Section 5 expands the type space of parents to a continuum.
12According to Gibbs and Wildfire (2007), the average occupancy rate is 1.5 children per home,

indicating that assuming one-to-one matches aligns with the empirical evidence.
13Alternatively, λ(x) can be interpreted as the probability with which a parent is considered to

provide care for a type-x child.
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Submarket
x1

Submarket
x2

License L

λ(x1) = 1 λ(x2) = 0

(a)

Submarket
x1

Submarket
x2

License L′

λ′(x1) =
1
4 λ′(x2) =

3
4

(b)

Figure 1: Examples of Randomization Devices

All agents are risk-neutral. The designer maximizes children’s welfare net of
transfers. Payoffs for unmatched agents are normalized to zero. When a child x

and a parent y form a match, the child receives payoffs according to a real-valued
function u(x, y), and the parent incurs a cost of providing care according to a real-
valued function c(x, y).14

Assumption 1. (a) for all (x, y), u(x, y) ≥ 0, c(x, y) ≥ 0 and u(x, y) − c(x, y) ≥ 0,
(b) u(x, y) is increasing in y, and (c) c(x, y) is increasing in x and decreasing in y.

Assumption 1(a) reflects the following: children are better-off placed with a
foster parent than being unmatched, parents incur a cost when providing care
for a child, and all matches are profitable. Assumption 1(b) states that children
prefer high- to low-ability parents. Finally, Assumption 1(c) implies that parents
incur in a smaller cost when matched to low-needs children than to high-needs
children, and high-ability parents incur in a smaller cost when providing care
than low-ability parents.

Timing is as follows:

1. First, the designer announces and commits to a menu of licenses. By the
revelation principle, we restrict attention to direct revelation mechanisms.
Thus, without loss of generality, we consider menus with two licenses, one
for each type of parent {Lk}2k=1 ≡

{{(
λk(xi), τ

k(xi)
)}2

i=1

}2

k=1
.

2. After observing themenu, eachparent chooses a license, whereσy ∈ {L1,L2}
denotes this decision. Then, the allocation of parents

{
{λk(xi)}2i=1

}2

k=1
across

submarkets is realized.15
14The parents’ cost function can be interpreted as a net cost function, which captures the balance

between the benefits of providing care for a child and the associated costs.
15Note that, if a license features an interior randomization device, parents who select it have

a strictly positive probability of being matched with either type of child before the outcome is
realized—that is, at the time the license is chosen.

9



3. Next, within each submarket, children and parents meet stochastically. The
meeting technology can be described in terms of the parents-to-children ra-
tio (market tightness). The market tightness of each submarket x ∈ X , de-
noted by θx, is equal to:

θx =

∑2
k=1 h

k(y1)λ
k(x) + hk(y2)λ

k(x)

f(x)

where hk(y) denotes the endogenous mass of parents y ∈ {y1, y2} choosing
license k. A child x meets a parent according to a meeting technology πc(θx)

where πc : R+ → [0, 1] is a strictly increasing and strictly concave function
such that πc(0) = 0. Similarly, a parent meets a child x with probability
πp(θx) where πp : R+ → [0, 1] is a strictly decreasing and convex function
such that πp(θx) =

πc(θx)
θx

16 and πp(0) = 1.17

4. Finally, when a child x and a parent y meet, a match (x, y) is formed and
transfers take place according to

{
{τ k(xi)}2i=1

}2

k=1
.

Designer’s Problem: The designer aims to maximize children’s welfare while
minimizing the transfers. We start by specifying the objective function of the de-
signer. Let L ≡

{{(
λk(xi), τ

k(xi)
)}2

i=1

}2

k=1
be an arbitrary menu of licenses. A

child x receives utility u(x, yj) when she matches with a parent yj . Notice that
parent yj might hold either contract, thus the net utility when a child x matches
with parent yj under contract k is u(x, yj)− τ k(x). Now, conditional on a meeting
taking place, the probability that child x has met a parent yj holding license k is
equal to:

λk(x)hk(yj)
2∑

k=1

[
λk(x)

2∑
j=1

hk(yj)
]

Thus, the net expected utility in each submarket x, conditional on a meeting tak-
ing place, is:

W (x) =

2∑
k=1

[ 2∑
j=1

[
u(x, yj)− τk(x)

]
· λk(x) · hk(yj)

]
2∑

k=1

λk(x) ·
[ 2∑
j=1

hk(yj)
] .

16This relationship ensures that the probability of a child meeting a parent is consistent with the
probability of a parent meeting a child, by equating the expected number of parents’ meetings to
children’s.

17The search friction assumption highlights the decentralizedmatching process in theU.S. foster
care system, where market congestion plays a key role. As market tightness increases, parents are
less likely to find children, while children are more likely to find parents. These frictions also
account for the possibility that congestion may prevent some matches from forming.
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Then, the designer’s problem is:

max{{(
λk(xi),τk(xi)

)}2

i=1

}2

k=1

{
2∑

i=1

πc
(
θxi

)
W (xi) f(xi)

}
(1)

subject to:

[FC] τk(x) ≥ 0 and λk(x) ≥ 0 for all (k, x), and
2∑

i=1

λk(xi) = 1 for all k = 1, 2.

[MT] θx =
1

f(x)
·

2∑
k=1

[
λk(x)

2∑
j=1

hk(yj)
]
, for all x.

[PC]
2∑

i=1

[
τk(xi)− c(xi, yk)

]
λk(xi)π

p(θxi) ≥ 0 , for all k = 1, 2.

[IC]
2∑

i=1

[
τk(xi)− c(xi, yk)

]
λk(xi)π

p(θxi) ≥
2∑

i=1

[
τk

′
(xi)− c(xi, yk)

]
λk′(xi)π

p(θxi) ,

for all k, k′ = 1, 2

where [FC] are the feasibility constraints specifying restrictions over each λk(x)

and τ k(x). The restrictions [MT] corresponds to the market tightness (parents-to-
children ratio) in each submarket. [PC] are the participation constraints guaran-
tying that each parent yj receives a higher expected payoff when holding license
k = j than when unmatched. Lastly, [IC] are the incentive compatibility con-
straints that ensures that our equilibria are truth-telling.

2.1 Definition of Sorting Patterns

Next, we define a matching correspondence and establish sorting patterns using
the randomization device of each license

{
λ1(xi), λ

2(xi)
}2

i=1
.

Definition 1. A matching correspondence is a map µ : Y 7→ X such that x ∈ µ(yk)

if and only if λk(x) > 0 . Moreover, if λ2(x2) ≥ λ1(x2) then the sorting exhibits Posi-
tive Assortative Matching (PAM). Analogously, if λ2(x2) ≤ λ1(x2) then the sorting
exhibits Negative Assortative Matching (NAM).

We are interested not only in establishing properties that ensures monotone
sorting but also in characterizing the optimal menu of licenses offered by the de-
signer. As a result, our notion of monotone sorting is as follows: We say high-type
PAM (NAM) if type-y2 parents are allocated into both submarket while type-y1

11



(a) Perfect PAM
y2

y1

x2

x1

µ(y2) = {x2}

µ(y1) = {x1}

(b) Low-type PAM
y2

y1

x2

x1

µ(y2) = {x2}

µ(y1) = {x1, x2}

(c) High-type PAM
y2

y1

x2

x1

µ(y2) = {x1, x2}

µ(y1) = {x1}

Figure 2: Examples of Positive Assortative Matching (PAM)

parents are allocated only into submarket x1 (x2). Analogously, low- type PAM
(NAM) follows.

Figure 2 presents examples illustrating our concept of monotone sorting pat-
terns. In Panel 2a, y2-parents are allocated into submarket x2 with probability
one and y1-parents are allocated into submarket x2 with probability zero, thus it
follows that 1 = λ2(x2) ≥ λ1(x2) = 0. In Panel 2b, y2-parents are allocated into
submarket x2 with probability one and y1-parents are allocated into both submar-
kets with strictly positive probability, thus 1 = λ2(x2) ≥ λ1(x2) ∈ (0, 1). Lastly, in
Panel 2c, y2-parents are allocated into both submarkets with strictly positive prob-
ability and y1-parents are allocated into submarket x2 with probability zero, thus
λ2(x2) ∈ (0, 1) ≥ λ1(x2) = 0.

Lastly, note that the randomization device in Panel 2c can represent the menu
of licenses used in practice, as outlined in the introduction. In this case, parents
holding license 1 are restricted to fostering only low-needs children i.e. µ(y1) =

{x1}, while parents with license 2 are eligible to foster both types of children i.e.
µ(y2) = {x1, x2}, reflecting the nested structure highlighted previously.

3 Equilibrium Analysis: Complete Information

In this section, we examine the optimal menu of licenses and analyze sorting pat-
terns that might arise in equilibrium under complete information. We focus on
symmetric equilibria where same type parents choose the same license. First, note
that by incorporating the [PC] constraints into the objective function in Equation

12



1, reduces the designer’s problem to:

max
{λk(x1),λk(x2)}2k=1

{
2∑

i=1

πp
(
θxi

) [ 2∑
k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]}
(2)

subject to [FC] and [MT]. For notational ease, from now on, let θ1 and θ2 denote
θx1 and θx2 , respectively. In addition, let S(x, y) ≡ u(x, y) − c(x, y) denote the
surplus of a match (x, y)which is increasing in y by Assumption 1.

Lemma 1. For at least one of the licenses, the optimal randomization rule (allocation)
yields a corner solution.

Proof. See Appendix C.1. □

Lemma 1 states that it is never optimal for the designer to allocate both types
of y-parents with strictly positive probability into submarkets x1 and x2. To prove
Lemma 1, we start by assuming that the designer allocates both types of y-parents
into both submarkets with strictly positive probabilities. We use the fact that the
market tightness derived from any interior

(
λ1(x1), λ

2(x1)
)
can be achieved by

any allocation on a line passing through
(
λ1(x1), λ

2(x1)
)
. Now, since the meet-

ing probabilities (i.e. market tightness) along that line are constant, we show that
the designer can always increase the welfare bymoving along the line towards the
corners. Intuitively, given a submarket, if using one type of parent is more prof-
itable than using the other, then the designer will allocate the entire population of
more profitable parents into that submarket. This result speaks to the optimality
of the nested hierarchy property exhibited in the licenses used in practice. That
is, one license allocates parents into only one submarket, while the other license
allocates parents into both submarkets.

Now, to characterize the optimal randomization rule we follow a nonstandard
technique due to the presence of corner solutions. We start with an arbitrary inte-
rior allocation and examine whether the designer can increase total expected wel-
fare by simply reallocating parents across submarkets. Formally, for each (x, k),
let λk(x) be an arbitrary-feasible interior probability that generates a total welfare
equal to:

W
(
λ1(x1), λ

2(x1)
)
= πp(θ1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
After trembling λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡ − ε1g(y1)

1−g(y1)
, ensuring
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that the market tightness remains constant, the change in welfare is equal to:

∆W = W
(
λ1(x1) + ε1, λ

2(x1) + ε2
)
−W

(
λ1(x1), λ

2(x1)
)

= ε1 g(y1)
(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])︸ ︷︷ ︸
ZCI(θ1)

Note that, θ2 = 1−f(x1)θ1
1−f(x1)

, thus ZCI(·) can be written as a function of only θ1. From
the change in welfare, it is easy to see that the designer can always increase total
welfare by changing

(
λ1(x1), λ

2(x1)
)
such that the market tightness remains con-

stant. The optimal allocation of parents can be characterized by ZCI(θ1), which
represents the expected difference in gains between children x2 and x1 from be-
ing matched to a high-ability parent as opposed to a low-ability parent. More-
over, the sign of ZCI(θ1) determines the equilibrium sorting. Let θ̄1 be such that
ZCI(θ̄1) = 0, then the following result holds:

Proposition 1. Let θ∗1 be the equilibrium market tightness. (i) If θ∗1 > θ̄1 then the equi-
librium sorting exhibits PAM. (ii) If θ∗1 < θ̄1 then the equilibrium sorting exhibits NAM.
(iii) θ∗1 = θ̄1 is never optimal.

Proof. See Appendix C.2. □

Proposition 1 states that if the equilibrium market tightness θ∗1 is such that
ZCI(θ∗1) is positive then PAM arises in equilibrium. To see this, note that ZCI(θ1)

is increasing in θ1, that is, the change in welfare increases as θ1 increases. Thus,
for any θ1 > θ1 it follows that ZCI(θ1) is positive. Therefore, when ZCI(θ1) is posi-
tive, we can pick ε1 > 0, increasing the share of y1-parents allocated in submarket
x1 and decreasing the share of y2-parents allocated in submarket x1, until either
λ1(x1) = 1 or λ2(x1) = 0. Either way, we move in the direction of PAM. Intu-
itively, a high θ∗1 translates into a small probability of a parent meeting a child in
submarket x1. Since y2-parents generate a greater surplus, it would be optimal to
minimize the probability with which they remain unmatched. Thus, the designer
chooses to use y2-parents in submarket x2, leading to PAM. Analogously, NAM
follows.

Figure 3 illustrates environments capturing Lemma 1 and Proposition 1. In
each box, the x- and y-axis correspond to the probability with which parents
holding license 1 and 2 are allocated into submarket x1, respectively. Thus, ev-
ery point inside the box

(
λ1(x1), λ

2(x1)
)
is a feasible allocation of parents. Yet,

note that by Lemma 1 only the points at the borders can be an equilibrium. In ad-
dition, each black-dashed line corresponds to the values of

(
λ1(x1), λ

2(x1)
)
such

14



(a) (b)

Figure 3: Illustration of PAM and NAM given ZCI(θ1)

that ZCI(θ1) = 0, each blue line shows the feasible allocations that can be an
equilibrium when ZCI(θ1) > 0 (above the black-dashed line), and each red line
shows the feasible allocations that can be an equilibrium when ZCI(θ1) < 0 (be-
low the black-dashed line). In Panel 3a, the equilibrium candidates are along the
vertical blue line and vertical red line. In the former, allocations are such that
λ2(x2) ≥ λ1(x2) = 0, which corresponds to high-type PAM. In the latter, alloca-
tions are such that 1 = λ1(x2) ≥ λ2(x2), which corresponds to high-type NAM.
Analogously, in Panel 3b, the equilibrium candidates are along the red and the
blue lines.

Now, we are interested in establishing sufficient conditions for PAM andNAM
to arise in equilibrium. Corollary 1 follows directly from Proposition 1.18

Corollary 1. (i) If S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1)

≥ 1

πp
(

1
f(x2)

) holds, then the equilibrium sorting ex-

hibits PAM. (ii) If S(x1,y2)−S(x1,y1)
S(x2,y2)−S(x2,y1)

≥ 1

πp
(

1
f(x1)

) holds, then the equilibrium sorting ex-

hibits NAM.

Proof. See Appendix C.3. □

For Corollary 1(i), notice that ZCI(θ1) reaches its minimum value at θ1 =

0, implying that πp(0) = 1 and θ2 = 1
f(x2)

. Thus, we ensure PAM by impos-
ing that the minimum value of ZCI(θ1) is positive. Observe that (i) requires a
super-modular surplus function since the right-hand side is greater than 1. More-
over, the greater the left-hand side of (i) is, the stronger the super-modularity is.
Thus, strong super-modularity on the surplus function dominates the adversary

18Corollary 1 ensures that PAMorNAMwill arise in equilibrium, but it does not specifywhether
we will observe either low-type PAM (NAM), high-type PAM (NAM), or perfect PAM (NAM).
See Appendix C.4 for a detailed characterization.
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effect of the search friction, and becomes sufficient to induce PAM at the opti-
mum.19Alternatively, one can think of the inequality (i) as a lower bound over
the share of children with high-needs to ensure PAM in equilibrium. Intuitively,
by imposing a lower bound on the share of type-x2 children we ensure that the
market is thick enough for the more desirable type-y2 parents , that is, the proba-
bility of meeting a child in submarket x2 is bounded below. This is in line with the
literature in dynamic search and matching, which imposes stronger complemen-
tarity conditions to ensure that more desirable partners have incentives to wait for
a more desirable partner from the other side of the market.20 Similar arguments
and intuition follows for (ii).

Figure 4 exhibits environments illustrating Corollary 1. In Panel 4a, the equi-
librium sorting can only exhibit PAM, sinceZCI(θ) = 0 is located in the left-bottom
corner. Analogously, in Panel 4b, the equilibrium sorting can only exhibit NAM,
since ZCI(θ) = 0 is located in the right-top corner.

(a) PAM (b) NAM

Figure 4: Illustration of Sufficient Conditions for Monotone Sorting

Next, we study the optimal transfer schemes. By fixing the optimal allocations
19By strong super-modularity on the surplus function wemean: [S(x2, y2)−S(x2, y1)

]
·πp

(
1

f(x2)

)
≥

S(x1, y2)−S(x1, y1)which introduces a constraint that is sensitive to the underlying distribution and
the specific meeting technology. Similarly, the condition of strong sub-modularity on the surplus
function follows.

20Shimer and Smith (2000) and Smith (2006) analyze a dynamic two-sided matching setting
with heterogeneous agents, random search and complete information. The former paper assumes
that utility is fully transferable and establishes as a sufficient condition not only supermodularity
on the value of amatch f(x, y)where x and y are the agent’s attributes, but also supermodulariy on
log fx and log fxy . The latter paper assumes that utility is strictly non-transferable and establishes
as sufficient conditions monotonicity and log-supermodularity in f(x, y). In both papers, these
conditions ensure that, in the search process, high-partners do not settle for a low-partner but
instead wait for the arrival of a high-partner. This is in the same spirit as our condition: we are
also making sure that the payoffs received frommatching high-types together compensate for the
adversary effect of search frictions.
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{λk∗(x1), λ
k∗(x2)}2k=1 from Equation 2, the designer solves the following:

min
{τk(x1),τk(x2)}2k=1

{
2∑

i=1

πp
(
θ∗i
) 2∑

k=1

τk(xi)λ
k∗(xi) g(yk)

}

subject to [FC], [MT], and [PC] from Equation 1. The following proposition
states that the transfer scheme is characterized by [PC]:

Proposition 2. Given an equilibrium allocation of parents {λk∗(x1), λ
k∗(x2)}2k=1, any

feasible transfer schedule for which the participation constraints hold with equality is an
equilibrium.

Proof. See Appendix C.5. □

Recall that the optimal allocation of at least one type of parent is a corner
solution, in which case the transfer can be trivially pinned down. As an exam-
ple, suppose that the equilibrium sorting exhibits perfect PAM, that is, y1-parents
are allocated into submarket x1 with probability one, while y2-parents are allo-
cated into submarket x2 with probability one. Then, the optimal transfer scheme
is τ 1∗(x1) = c(x1, y1) and τ 2∗(x2) = c(x2, y2). That is, parents receive exactly the
cost of providing care as is current practice.

In the case of an interior solution for at least one license, the optimal trans-
fer scheme is not unique. As an example, suppose that the equilibrium sorting
exhibits high-type PAM, that is, y1-parents are allocated into submarket x1 with
probability one, while y2-parents are allocated into both submarkets with strictly
positive probability. Note, this is similar to the example of Arizona discussed in
the introductionwhere low-needs children can be fostered by parents holding any
of the two licenses, and high-needs children can only be fostered by parents hold-
ing one particular license. Here, the optimal transfer scheme is τ1∗(x1) = c(x1, y1),
τ2∗(x1) ≥ 0 and τ2∗(x2) = c(x2, y2)− [τ2∗(x1)− c(x1, y2)]

πp(θ∗1)λ
2∗(x1)

πp(θ∗2)λ
2∗(x2)

. Now, as in prac-
tice, let’s suppose that we include a restriction imposing that parents who pro-
vide care in the same market receive the same transfer, that is, τ 1∗(x1) = τ 2∗(x1) =

c(x1, y1). In this case, the optimal transfer for parent y2 in submarket x2 would be
the following:

τ2∗(x2) = c(x2, y2)−
[
c(x1, y1)− c(x1, y2)

]πp(θ∗1)λ
2∗(x1)

πp(θ∗2)λ
2∗(x2)

Remark 1. A simple transfer schedule suffices; in equilibrium, parents holding different li-
censes and caring for the same type of child can receive the same transfer. This follows directly from
the nested nature of the equilibrium allocation, meaning that markets are segregated. In contrast,
for a fully interior allocation, such a simple transfer schedule would not simultaneously satisfy
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both [PC] conditions. Since the designer can select any randomization device, it is far from trivial
that simple transfers can always form part of an equilibrium. Furthermore, equilibrium transfers
depend on additional market features, including the number of children, the number of parents, the
allocation itself, and the meeting technology.

Now, we present an example of an environment where super-modularity does
not imply PAM in equilibrium.

Example 1. (Positive Assortative Matching Fails) Consider an environment where
f(x1) = 0.8, g(y1) ∈ (0, 1), and the match values are determined by a super-modular func-
tion S(x, y) with the following values: S(x2, y2) = 191, S(x1, y2) = 201, S(x2, y1) = 40 and
S(x1, y1) = 51. Additionally, assume the meeting technology is given by πp(θ) = πc(θ)/θ =

1/1+θ.21

Figure 5: Randomization Device - Complete Information

Figure 5 illustrates the optimal allocation (randomization) of parents into submarket x1 for
any g(y1) ∈ (0, 1). For instance, when g(x1) = 0.5, the optimal allocation is λ1∗(x1) = 0 and
λ2∗(x1) = 1, reflecting perfect-NAM. In fact, the optimal menu exhibits NAM for any value of
g(y1) below approximately 0.8, despite the surplus function S(x, y) being super-modular. Refer to
Appendix B.1 for a detailed analysis of this sample environment. □

4 Equilibrium Analysis: Private Information

In this section, we analyze the case where a parent’s ability is private information
by solving the problem specified in Equation 1. Recall that high-ability parents
incur a smaller cost when providing care for any child than low-ability parents
do. Thus, high-ability parents receive a smaller expected transfer under the opti-
mal menu specified for the complete information setting. As a result, high-ability

21Note the following: (i) the share of low-needs children is similar towhat is observed in practice
(see Appendix A), and (ii) the condition on primitivesmentioned in Corollary 1(i) is not satisfied.
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parents have incentives to mimic low-ability parents in order to receive a greater
expected transfer in the presence of private information. This is true regardless
of the sorting pattern/equilibrium allocation. Therefore, [PC] for low-ability par-
ents and [IC] for high-ability parents must be binding in equilibrium. After in-
corporating these two constraints into the objective function in Equation 1, the
designer’s problem reduces to:

max
{λk(x1),λk(x2)}2k=1


2∑

i=1

πp
(
θi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]

−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)g(y2)

}
(3)

subject to [FC], [MT], and [IC] for low-ability parents.22,23

As one can see, in the objective function, extra terms appear in the second
line due to information frictions . Looking closely, it corresponds to the expected
gain that a high-ability parent obtains by mimicking low-ability parents. Even so,
we start by showing that Lemma 1 and Proposition 1 presented in the previous
section hold under private information (see Appendix D.1 and D.2). Following
the same arguments as we did previously, the term that characterizes the optimal
allocation of parents across submarkets becomes:

ZPI(θ1) = πp(θ2)

([
u(x2, y2)−

c(x2, y2)

g(y1)

]
−
[
u(x2, y1)−

c(x2, y1)

g(y1)

])
− π(θ1)

([
u(x1, y2)−

c(x1, y2)

g(y1)

]
−
[
u(x1, y1)−

c(x1, y1)

g(y1)

])
(4)

Note that ZPI(θ1) is analogous to ZCI(θ1), adjusted by the cost due to information
22Notice, [PC] for low-ability parents and [IC] for high-ability parents imply [PC] for high-

ability parents, see proof of Proposition 4 in Appendix D.5.
23For the complete information case, the assumption

∑
x∈X λ(x) = 1 does not play a role in our

results: if we relax it to
∑

x∈X λ(x) ≤ 1, at the optimum this inequality will still be binding. In
the private information setting, the optimum could change if we relax this equality: the designer
might find it optimal to leave some foster parents out of the market to mitigate the incentives of
mimicking. However, we believe that our assumption is reasonable considering that foster care
exhibits a shortage of foster parents, who have to pass a rigorous assessment to be accepted to par-
ticipate in the market. Thus, imposing that the system would like to employ all available parents
is in line with the child welfare agencies objectives. In addition, relaxing this assumption would
make the problem intractable for the private information case.
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friction. Recall,

ZCI(θ1) = πp(θ2)
([

u(x2, y2)− c(x2, y2)
]
−
[
u(x2, y1)− c(x2, y1

])
− πp(θ1)

([
u(x1, y2)− c(x1, y2)

]
−
[
u(x1, y1)− c(x1, y1)

])
(5)

A couple of significant insights are worth highlighting. First, if g(y1) = 1 then
Equations 4 and 5 are equivalent. In words, if there is no high-ability parents then
there is no screening problem. Second, c(x,y)

g(y1)
is greater than c(x, y) for all (x, y).

That is, in the private information case, the cost of providing care is amplified by
the information friction. Third, as g(y1) increases, c(x,y)

g(y1)
decreases and approaches

to c(x, y). In words, as the share of low-ability parents increases, the cost of infor-
mation frictions decreases.

As in Section 3, the sign of ZPI(·) at the equilibrium θ1 determines the equi-
librium sorting (see Appendix D.2). Now, we present sufficient conditions for
monotone sorting under private information, analogous to Corollary 1:24

Corollary 2. (i) If
S(x2,y2)−S(x2,y1)+

g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+
g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) and c(x2,y1)−c(x2,y2)
c(x1,y1)−c(x1,y2)

≥
1

πp
(

1
f(x2)

) hold, then the equilibrium sorting exhibits PAM.

(ii) If
S(x1,y2)−S(x1,y1)+

g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]

S(x2,y2)−S(x2,y1)+
g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]
≥ 1

πp
(

1
f(x1)

) and c(x1,y1)−c(x1,y2)
c(x2,y1)−c(x2,y2)

≥ 1

πp
(

1
f(x1)

)
hold, then the equilibrium sorting exhibits NAM.

Proof. See Appendix D.3. □

Unlike the complete information case, the surplus function is not sufficient to
elicit the equilibrium sorting pattern under the presence of private information.
Here, we need to take into account the cost of a match as well as the distribution
of parents. The first condition of Corollary 2(i) ensures that the allocation that
maximizes the objective function exhibits PAM, and the second condition guar-
antees that the allocation is implementable—incentive compatible. Note, the sec-
ond condition requires c(x, y) to be a strong sub-modular function.25 That is, the
difference between the cost of providing care for a child x2 and a child x1 must
be greater for low-ability parents than for high-ability parents. A sub-modular
cost function implies that the informational rents paid to high-ability parents are

24See Appendix D.4 for a detailed characterization.
25By strong sub-modularity on the cost function we mean: [

c(x2, y1) − c(x2, y2)
]
· πp

(
1

f(x2)

)
≥

c(x1, y1)− c(x1, y2)which introduces a constraint that is sensitive to the underlying distribution and
the specific meeting technology. Similarly, the condition of strong super-modularity on the cost
function follows.
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lower under PAM than NAM. In other words, it is cheaper for the designer to mo-
tivate high-ability parents to report truthfully while inducing PAM. Thus, such a
cost function pushes forces for the equilibrium sorting towards PAM. Note that,
even if the surplus function S(x, y) is sub-modular we may observe PAM, as in
the complete information case. Analogous for 2(ii).

Next, motivated by the fact that the child welfare agency may not know the
distribution of parents’ attributes, we establish conditions that do not depend on
this primitive:

Corollary 3. (i) If S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1)

≥ 1

πp
(

1
f(x2)

) and c(x2,y1)−c(x2,y2)
c(x1,y1)−c(x1,y2)

≥ 1

πp
(

1
f(x2)

) hold,

then the equilibrium sorting exhibits PAM.

(ii) If S(x1,y2)−S(x1,y1)
S(x2,y2)−S(x2,y1)

≥ 1

πp
(

1
f(x1)

) and c(x1,y1)−c(x1,y2)
c(x2,y1)−c(x2,y2)

≥ 1

πp
(

1
f(x1)

) hold, then the equi-

librium sorting exhibits NAM.

Corollary 3 follows directly from Corollary 2. In item (i), we require S(x, y)

to be a strong super-modular function as in the complete information case, plus
the condition of strong sub-modularity in c(x, y) to ensure incentive-compatibility.
Thus, we add an extra condition to the complete information result.

It is now important to examine the problem under more relaxed conditions,
specifically when the conditions outlined in Corollaries 2 and 3 are not satisfied.

Remark 2. The incentive-compatibility conditions are satisfied if and only if:(
λ2(x2)− λ1(x2)

)(
πp(θ2)

[
c(x2, y1)− c(x2, y2

]
− πp(θ1)

[
c(x1, y1)− c(x1, y2)

])︸ ︷︷ ︸
C(θ1)

≥ 0

where C(·) represents the expected cost difference between caring for child x2 and child x1 when
comparing a high-ability parent to a low-ability parent. Note that, C(θ1) increases with θ1. Fur-
thermore, λ2(x2)− λ1(x2) is non-negative if the given allocation exhibits PAM.

Next, we provide a partial characterization. Let C(θ′1) = 0 and ZPI(θ′′1) = 0 for
some θ′1 and θ′′1 . Thus, C(θ1) > 0 if and only if θ1 > θ′1, and ZPI(θ1) > 0 if and only
if θ1 > θ′′1 .

Proposition 3. Let θ∗∗1 denote the equilibrium market tightness derived from the solution
{λk∗∗(x1)}2k=1 in Equation 3. (i) If θ∗∗1 ≥ max

{
θ′1, θ

′′
1

}
then {λk∗∗(x1)}2k=1 is a solution

to Equation 1 which exhibits PAM. (ii) If θ∗∗1 ≤ min
{
θ′1, θ

′′
1

}
then {λk∗∗(x1)}2k=1 is

a solution to Equation 1 which exhibits NAM. (iii) Otherwise, {λk∗∗(x1)}2k=1 and the
corresponding induced θ∗∗1 do not solve Equation 1.
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Proposition 3 is analogous to Proposition 1. It essentially states that the solu-
tion to the relaxed problem forms an equilibrium for the more constrained prob-
lem if the resulting market tightness in submarket-x1 is either sufficiently high or
low, relative to specific thresholds determined by themeeting technology, surplus,
and cost functions: max

{
θ′1, θ

′′
1

}
and min

{
θ′1, θ

′′
1

}
.

Next, we analyze the equilibrium transfers under private information. By fix-
ing the optimal allocations {λk∗∗(x1), λ

k∗∗(x2)}2k=1 from Equation 3, the designer
solves the following:

min
{τk(x1),τk(x2)}2k=1

{
2∑

i=1

πp
(
θ∗∗i

) 2∑
k=1

τ k(xi)λ
k∗∗(xi) g(yk)

}

subject to [FC], [PC] and [IC] from Equation 1. Here, the [PC] for low-ability
parents, and the [IC] for high-ability parents determine the equilibrium transfer
scheme. Formally:

Proposition 4. Fix an equilibrium allocation of parents {λk∗∗(x1), λ
k∗∗(x2)}2k=1. Any

feasible transfer schedule for which the PC for y1-type parents as well as the IC for y2-type
parents are satisfied by equality is an equilibrium, if one of the following hold:

(i) λ2∗∗(x2) ≥ λ1∗∗(x2) and c(x, y) is strong sub-modular, or

(ii) λ1∗∗(x2) ≥ λ2∗∗(x2) and c(x, y) is strong super-modular

Proof. See Appendix D.5. □

Note that, conditions in Corollaries 2 and 3 are also sufficient for Proposition
4. In particular, Corollary 2(i) or Corollary 3(i) ensure two things: (1) the cost
function c(x, y) is strong sub-modular, and (2) the randomization device exhibits
PAM, that is, λ2∗∗(x2) ≥ λ1∗∗(x2). Thus, conditions in Corollaries 2 or 3 satisfy the
conditions in Proposition 4(i). Analogous, for item (ii).

When the equilibrium sorting exhibits perfect PAM, the optimal transfer scheme
is as follows: τ 1∗∗(x1) = c(x1, y1) and τ 2∗∗(x2) = c(x2, y2)+[c(x1, y1)−c(x1, y2)]

πp(θ∗∗1 )

πp(θ∗∗2 )
.

That is, y1-parents receive exactly the cost of providing care, while y2-parents re-
ceive the cost of providing care plus informational rents. Thus, it is no longer
optimal to transfer parents just the cost of providing care; screening requires to
compensate high-ability parents to disclose their type truthfully.

Similarly, let’s suppose that the equilibrium sorting exhibits high-type PAM. In
this case, the optimal transfers are as follows: τ 1∗∗(x1) = c(x1, y1), τ 2∗∗(x1) ≥ 0 and
τ 2∗∗(x2) = c(x2, y2)−[τ 2∗∗(x1)−c(x1, y2)]

πp(θ∗∗1 )λ2∗∗(x1)

πp(θ∗∗2 )λ2∗∗(x2)
+[c(x1, y1)−c(x1, y2)]

πp(θ∗∗1 )

πp(θ∗∗2 )λ2∗∗(x2)
.
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For instance, suppose that parents who provide care in the same market must re-
ceive the same transfer, that is, τ 1∗∗(x1) = τ 2∗∗(x1) = c(x1, y1). The optimal transfer
for parent y2 in submarket x2 would be the following:

τ 2∗∗(x2) = c(x2, y2)−
[
c(x1, y1)− c(x1, y2)

]πp(θ∗∗1 )λ2∗∗(x1)

πp(θ∗∗2 )λ2∗∗(x2)

+ [c(x1, y1)− c(x1, y2)]
πp(θ∗∗1 )

πp(θ∗∗2 )λ2∗∗(x2)

As one can observe, compared to the complete information setting, a positive
extra term appears in the transfer for high-ability parents who provide care in
submarket x2. This is to incentivize high-ability parents to reveal their true types.

Lastly, we revisit Example 1 by incorporating private information.

Example 2. (Positive Assortative Matching Fails). Recall the environment in Ex-
ample 1: f(x1) = 0.8, g(y1) ∈ (0, 1), S(x2, y2) = 191, S(x1, y2) = 201, S(x2, y1) = 40,
S(x1, y1) = 51, and that πp(θ) = 1/1+θ. Moreover suppose that the cost function is super-
modular with the following values: c(x2, y2) = 15, c(x1, y2) = 1, c(x2, y1) = 20 and
c(x1, y1) = 15.26

Figure 6: Randomization Device - Private & Complete Information

Figure 6 shows that the optimal randomization devices for both complete and pri-
vate information scenarios are remarkably similar. Specifically, λ1(x1) and λ2(x2) closely
resemble λ̂1(x1) and λ̂2(x2), respectively.27 However, when g(y1) is approximately in
(0.8, 0.9), the equilibrium sorting pattern is PAM under complete information, whereas it
is NAM with private information. To see the intuition, consider an equilibrium menu
of licenses that implements perfect sorting under the complete information, such that

26Notice, the cost function here guarantees the existence of a separating menu of licenses under
NAM, whereas any equilibrium exhibiting PAM does not screen parents.

27This similarity arises due to the values of the surplus and cost functions. If the values of the
cost function were to increase, it would lead to a notable disparity in the optimal randomization
rule between the complete and private information settings.
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τ k(x) = c(x, yk). If the menu implements NAM(PAM), then type-y2 parents pretend
to be type-y1 to be able to match with type-x2(type-x1) instead of type-x1(type-x2) chil-
dren. The misreport under NAM allows parent type-y2 parent to (ex-post) gain as much
as τ 1(x2)−c(x2, y2) = 5whereas the misreport under PAM does τ 1(x1)−c(x1, y2) = 14.
That is, type-y2 parents have stronger incentives to misreport if the equilibrium sorting is
PAM than when it is NAM. Thus, it is cheaper for the designer to switch the equilibrium
sorting from PAM to NAM for the (roughly) specified region of g(y1). Notice, this intu-
ition is in line with the counterpart of Corollary 2(i). See Appendix B.2 for an in-depth
analysis of the sample environment discussed in this section.

□

5 Discussions and Extensions

In this section, we extend our complete information model in two key directions
and present the corresponding findings. First, we maintain the classification of
children into high- and low-need categories while broadening the parental at-
tribute space to a continuum. Second, we analyze the sensitivity of our results
by conducting comparative statics on the meeting technology.

5.1 Continuous type of Parents

Motivated by the fact that a parents ability to provide care might be a continu-
ous variable, we now assume that parents differ in y ∈ |y, ȳ| ≡ Y ⊂ R+, which
follows a continuous and differentiable cumulative distribution function (CDF)
G(x) with a strictly positive probability density function (PDF) g(x). We uphold
our regularity conditions: S(x, y) is increasing in y, while c(x, y) is increasing in x

and decreasing in y.
Now, a license for type-y parent is L(y) ≡

{(
λ(xi, y), τ(xi, y)

)}2

i=1
. Thus, con-

ditional on a meeting taking place, the probability that child x has met a parent y
is equal to:

λ(x, y)g(y)
y∫
y

λ(x, y)g(y) dy

Thus, the net expected utility in each submarket x, conditional on ameeting taking
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place, is:

W (x) =

y∫
y

[
u(x, y)− τ(x, y)

]
λ(x, y)g(y) dy

y∫
y

λ(x, y)g(y) dy

.

Then, the designer’s problem is:

max({(
λ(xi,y),τ(xi,y)

)}2

i=1

)
y∈Y

{
2∑

i=1

πc
(
θi
)
W (xi) f(xi)

}
(6)

subject to [FC] and [PC] defined as in earlier, and

[MT] θi =
1

f(x)
·

y∫
y

λ(x, y)g(y) dy , for all i ∈ {1, 2}

After incorporating the [PC] equations into the objective function, and using
the [MT] along with the relationship πc(θ)/θ = πp(θ), the designer’s problem re-
duces to:

max({
λ(xi,y)

}2

i=1

)
y∈Y

{
2∑

i=1

πp
(
θi
)
·

y∫
y

S(xi, y)λ(xi, y)g(y) dy

}
(7)

It is easy to see that the randomization device λ(x, y) is independent of whether
interim or ex-post participation constraints are satisfied (see Corollary C.1). Fur-
thermore, the segregation result from the two-type case (see Lemma 1) extends
to the current environment, albeit with a caveat:

Lemma 2. Any interior randomization λ(x, y) is not optimal.

Proof. See Appendix E.1.1. □

Lemma 2 states that for each parent y, the randomization device will take a
value of either zero or one. Notably, unlike in the complete information case, a
parent will foster only one type of child here. Therefore, the nested structure of li-
censes described in the introduction does not appear in this case. The proof closely
follows the two-type case. Begin with an interior randomization λ(x1, y) ∈ (0, 1)

for any y such that λ(x2, y) = 1 − λ(x1, y) by the [FC]. Next, define a mono-
tone function ε : Y → (0, 1) such that

∫
ε(y)g(y) dy = 0. Apply a perturbation

to the initial pair λ(y) =
(
λ(x1, y), λ(x2, y)

)
to obtain a new allocation λ̃(y) ≡(

λ(x1, y)−ε(y), λ(x2, y)+ε(y)
)
ensuring that market tightness remains unchanged
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under both λ(y) and λ̃(y). The change in welfare resulting from this perturbation
is:

∆W =

y∫
y

[
πp(θ2)S(x2, y)− πp(θ1)S(x1, y)

]︸ ︷︷ ︸
ẐCI(y|θ)

ε(y)g(y) dy,

where θ = (θ1, θ2). Then, we construct the perturbation function ε(y) such that it is
monotone increasing over regions where ẐCI(y|θ) is increasing andmonotone de-
creasing over regions where ẐCI(y|θ) is decreasing. This yields a strictly positive
change in welfare, which finishes the proof.

Next, let’s extend the definition of sorting patterns:

Definition 2. If λ(x2, y) is non-decreasing (non-increasing) in y, then the sorting ex-
hibits PAM (NAM).

Proposition 5 states that, given an equilibrium market tightness (θ∗1, θ∗2), there
exists a threshold parent level such that all parents below this threshold are allo-
cated to one submarket, while all parents above it are allocated to the other sub-
market. This result reflects a complete segregation of the market.

Proposition 5. Let (θ∗1, θ∗2) be an equilibrium market tightness.

(i) If πp(θ∗)S(x, y) is super-modular, then the equilibrium sorting exhibits PAM. That
is, λ∗(x2, y) = 0 for all y ≤ ŷPAM and λ∗(x2, y) = 1 for all y > ŷPAM where
θ∗1 = G(ŷPAM )/1−f(x2) and θ∗2 = 1−G(ŷPAM )/f(x2).

(ii) If πp(θ∗)S(x, y) is sub-modular, then the equilibrium sorting exhibits NAM. That
is, λ∗(x2, y) = 1 for all y ≤ ŷNAM and λ∗(x2, y) = 0 for all y > ŷNAM where
θ∗1 = 1−G(ŷNAM )/1−f(x2) and θ∗2 = G(ŷNAM )/f(x2).

Proof. See Appendix E.1.2. □

In the following, we establish sufficient conditions for monotone sorting. To
this end, let S(x, y) be continuous and differentiable over Y , and let Sy(x, ·) denote
the partial derivative of S(x, y)with respect to y.

Corollary 4. need a blank line here

(i) If Sy(x2,ỳ)

Sy(x1,ỳ)
≥ 1

πp
(

1
f(x2)

) where ỳ := argmin
y∈Y

πp
(

1
1−f(x1)

)
Sy(x2, y) − Sy(x1, y), then

the equilibrium sorting exhibits PAM. That is, λ∗(x2, y) = 0 for all y ≤ ŷPAM and
λ∗(x2, y) = 1 for all y > ŷPAM with:

ŷPAM := argmax
ŷ∈Y

πp
( G(ŷ)

f(x1)

) ŷ∫
y

S(x1, y)g(y)dy + πp
( 1−G(ŷ)

1− f(x1)

) y∫
ŷ

S(x2, y)g(y)dy.
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(ii) If Sy(x1,ý)

Sy(x2,ý)
≥ 1

πp
(

1
f(x1)

) where ý := argmax
y∈Y

Sy(x2, y)−πp
(

1
f(x1)

)
Sy(x1, y), then the

equilibrium sorting exhibits NAM. That is, λ∗(x2, y) = 1 for all y ≤ ŷNAM and
λ∗(x2, y) = 0 for all y > ŷNAM with:

ŷNAM := argmax
ŷ∈Y

πp
(1−G(ŷ)

f(x1)

) y∫
ŷ

S(x1, y)g(y)dy+πp
( G(ŷ)

1− f(x1)

) ŷ∫
y

S(x2, y)g(y)dy.

Proof. See Appendix E.1.3. □

Corollary 4 (i) implies that S(x, y) is supermodular. This suggests that our
condition is slightly stronger than the standard supermodularity of the surplus
function required to ensure PAM, as in the two-type case. Analogously, a sufficient
condition—Corollary 4 (ii)—for NAM follows. Furthermore, these conditions re-
sult in a segregation of the market, with one key distinction to the two-type case:
no parent is allocated across both submarkets. Specifically, a threshold type-y par-
ent emerges, dividing the type space into two distinct partitions, each allocated to
a separate submarket. This contrasts with environments involving a finite number
of parent types. An immediate implication is that if the conditions for monotone
sorting are satisfied, the designer’s problem simplifies to selecting the threshold
type-y parent that partitions the type space. This choice is effectively equivalent
to determining the market tightness.

Remark 3. The model and analysis can be readily extended to accommodate an arbitrary
environment with X = {x1, x2, . . . , xn} where n ≥ 2 while y ∼ Y with a nonzero
PDF g(·). In such a setting, whenever λ(x, y) ∈ (0, 1) for some x ∈ {xi, xj} over some
non-zero measure Y ′ ⊆ Y , a similar perturbation—between submarkets i and j over the
type-space Y ′ without altering MT at each submarket—yields the following change in the
welfare:

∆W =

∫
y∈Y ′

[
πp(θxi)S(xi, y)− πp(θxj )S(xj , y)

]
ε(y)g(y)dy.

Thus, the steps outlined above can be easily followed to replicate the analysis and derive
characterizations analogous to Proposition 5 as well as Corollary 4.

Lastly, regarding the transfers, they can be easily determined by the [PC] since
parents are allocated to exactly one submarket. Specifically, τ ∗(xi, y) = c(xi, y) if
λ∗(xi, y) = 1 for all (xi, y). Thus, in this case, we observe that paying parents ex-
actly the cost of providing care, as mentioned in the Arizona example, constitutes
an equilibrium. However, it is important to note that this outcome is optimal only
when licenses are not nested.
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5.2 Improvement in the Meeting Technology

In this section, we analyze the role of meeting technology in modeling search
frictions within the allocation process. Specifically, we investigate how changes
in search technology—whether advancements or setbacks—affect our sorting re-
sults. This analysis is motivated by the observed differences in the effectiveness
of child welfare agencies in matching children with suitable foster families.

Formally, we define what constitutes an improvement in search technology,
concentrating, without loss of generality, on its application to parents. Recall that
πp(·) is a strictly decreasing and strictly convex function bounded by πp(0) = 1

and lim
θ→∞

πp(θ) = 0.28 Let Πp be the set of all such bounded, strictly decreasing,
and strictly convex functions. For any πp, π̂p ∈ Πp, we say that π̂p is an improved
technology compared to πp if ∂π̂p(θ)/∂θ > ∂πp(θ)/∂θ for any finite θ. Note, this also
implies π̂p(θ) > πp(θ). If π̂p is an improved technology of πp, we denote πp ▷

π̂p. Now, the following partially characterizes the equilibrium sorting as meeting
technology improves:

Proposition 6. Suppose S(x, y) is super-modular (sub-modular). If the equilibrium
sorting is PAM (NAM) with some meeting technology πp, then it remains PAM (NAM)
for any π̂p such that πp ▷ π̂p.

Proof. See Appendix E.2.1. □

6 Concluding Remarks

This paper analyzes the foster care system in the US as a two-sidedmatchingmar-
ket wherein one side consists of children who are heterogeneous in level of care
needed, and the other side consists of parents who differ in their ability to take
care of a child. We solve for the optimal menu of licenses which specifies an al-
location of parents across submarkets of children as well as the corresponding
transfers, under the presence of search and information frictions.

With a discrete type space, the paper establishes two key results that hold re-
gardless of the information frictions: (i) it is not optimal to mix multiple types
of parents into multiple submarkets of children, and (ii) super-modularity and
sub-modularity of the surplus of a match are neither sufficient nor necessary con-
ditions for the optimal sorting to exhibit PAM andNAM, respectively. The former

28Moreover, recall that πc(θ)/θ ≡ πp(θ). And thus, for any other meeting technology for parents
π̃p(θ), it has to be the case that π̃p(θ)·θ = π̃c(θ) is strictly increasing and concavewith the following
bounds π̃c(0) = 0 and lim

θ→∞
π̃c(θ) = 1.
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rationalizes the nested nature of the menu of licenses offered by various states in
the US. The latter has implications on the optimal allocation of parents: even if the
surplus shows complementarity (substitutability) in child and parent’s attributes,
allocating parents into submarkets such that the sorting exhibits PAM (NAM) is
not necessarily optimal due to search frictions.

We also make inferences once information friction is introduced: as the share
of low-type parents increases, the allocation of parents approaches to the first-best
(complete information). Because, high-type parents mimic the low-type ones to
receive a greater expected transfer. As a result, the designer pays information
rents to high-type parents to overcome such incentives. The smaller the share of
high-type parents, the less the designer cares about such mimicking incentives.
However, if the proportion of high-type parents is big enough, then not only the
allocation diverges from the first-best, but also the optimal sorting may reverse.

Lastly, we analyze the sensitivity of our results by introducing a continuous
attribute space for parents and briefly discuss the implications of expanding the
discrete attribute space for children.
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A Appendix: Foster Care in the US

A.1 Overview

During 2020 Federal Fiscal Year (FFY),29 child welfare agencies across the United
States received more than 3.9 million allegations of suspected child abuse or ne-
glect (equivalent to approximately 7.1 million children). Out of these children,
9 percent were removed from their homes and placed into foster care. Accord-
ing to Rosinsky et al. (2023), the national spending on child welfare in 2020 FFY
was approximately US$34.1, out of which US$15.2 billion was federally funded,
and the remaining was financed directly by States. Furthermore, 45 percent of the
national spending was destined to foster care placement expenditure, including
payments to foster parents.

Using the Foster Care Files from AFCARS,30 we observed that in 2020 FFY
there were 631,254 children in foster care. On average, these children were almost
7 years old, 49 percent were females, 69 percent were white, and 24 percent were
clinically diagnosed with a disability.31 Thus, based on the disability variable, we
can infer that at least 24 percent of children in theUS foster care are special needs.32

During their stay in foster care, 77 percent of these childrenwere placedwith foster
parents, 9 percent were placed in institutional care, and the remaining had other
arrangements. Foster parents caring for children with and without a disability
received an average payment of US$1,423 and US$ 2,704 per month, respectively.
In this data set, foster parents are not identifiable; only family structure, race and
year of birth are reported. Thus, since we do not know how many times a foster
parent might appear, we can not provide reliable statistics.

Most of the information regarding foster parents comes from Census data and
surveys. Using Census data from 2000, O’Hare (2008) finds that households with
foster children, compared to all other households with children, are: less likely
to be married-couples, less likely to have a member who finished college, less
likely to work full-time, more likely to be low income families, and more likely
to receive public assistance income. Now, after conducting a survey of 297 foster
mothers, Cox et al. (2011) finds that the average age is 44.1 years old, 88.2 percent

29October 1, 2019 to September 30, 2020.
30AFCARS is a federally mandated data collection system. All fifty US states and the District of

Columbia are required to collect data on all children in foster care and all children adopted from
foster care.

31A disability includes conditions such as blindness, glaucoma, arthritis, multiple sclerosis,
down syndrome, personality disorder, attention deficit, and anxiety disorder, among others.

32In the majority of the cases, once a child enters the foster care system, a mandatory medical
evaluation is performed, therefore we assume that the level of care needed is common knowledge.
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are European-American, 75.1 percent are married, 28.9 percent have a bachelor’s
degree, 33 percentworks full-time, and 50.1 percent have an annual family income
less than USD$50,000.

A.2 Matching Process

Foster care is overseen andmanaged at the state level by Child Protective Services
(CPS). Upon receiving an allegation regarding a child’s well-being, CPS assigns a
social worker to the case, starting an investigation. If sufficient evidence support-
ing an accusation is identified, the case is presented to a juvenile or family court.
The judge then determines whether the child should be removed from their birth
family home and placed in foster care.

In many states, decisions regarding the placement of children are made by
social workers. Acting on behalf of the child, the social worker (a) searches for
and contacts foster parents, (b) facilitates a meeting between the foster parent
and child to assess compatibility, and (c) decides on the placement of the child.
In this search process, the social worker can only consider fosters parent who are
certified, through a license, to provide care for the child.

Foster parents must obtain a license to provide care for children. The licensing
process involves a home study and mandatory training. The home study ensures
the foster parent’s residence is clean, in good condition, and free from hazards.
Initial training, ranging from 15 to 30 hours, covers topics such as agency policies,
foster parent roles and responsibilities, and behavior management. The menu of
licenses varies across states (for more details see DeVooght and Blazey (2013)).
As we mentioned in the introduction, children are grouped by the level of care
needed, and transfers vary across groups. These transfers follow the principle
that foster parents caring for children with high-needs receive greater transfers.
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B Appendix: Omitted Examples

In this section, we provide a more in-depth discussion of Examples 1 and 2. Ad-
ditionally, we present environments that satisfy Corollaries 1 and 2, along with an
explanation of how they fulfill the conditions for PAM.

B.1 Complete Information

Example B.1. (Detailed explanation of Example 1). Figure B.1 illustrates an en-
vironment where super-modularity in the surplus function S(x, y) is not a suf-
ficient condition for PAM. We assume that the share of low-needs children is
f(x1) = 0.8, the functional form of the meeting technology is πp(θ) = 1

1+θ
, and

S(x, y) is a super-modular function with values S(x2, y2) = 191, S(x1, y2) = 201,
S(x2, y1) = 40 and S(x1, y1) = 51. Here, the condition over primitives presented
in Corollary 1(i) is violated: 1 = S(x2,y2)−S(x2,y1)

S(x1,y2)−S(x1,y1)
̸≥ 1

πp(1/f(x2))
= 5.99

(a) Randomization Device (b) Market Tightness (c) Expected Transfers

Figure B.1: Monotone Sorting Fails

Panel B.1a presents the optimal probability with which parents holding li-
censes 1 (blue line) and 2 (orange line) are allocated into submarket x1. The y-axis
corresponds to these probabilities while the x-axis presents possible values for the
share of low-ability parents, g(y1). In Panel B.1b, we plot the optimal market tight-
ness for submarket x1 (blue line) and x2 (orange line) as a function of the share of
low-ability parents, g(y1). Here, the y-axis corresponds to possible values for the
market tightness. In Panel B.1c, we plot the optimal expected transfers received
by all y1-parents (blue line) and all y2-parents (orange line) as a function of the
share of low-ability parents, g(y1). In addition, we also include the optimal total
expected transfers (green line), or equivalently, the optimal total cost incurred by
the child welfare agency to implement the optimal sorting. Lastly, in every graph,
the blue- and golden- shaded regions correspond to PAM andNAM, respectively.

As Panel B.1a illustrates, for small enough values of g(y1), the equilibrium sort-
ing exhibitsNAM, evenwhen the surplus function is super-modular. Thus, super-
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modularity is not a sufficient condition for PAM to hold in equilibrium. For the
same interval of g(y1), Panel B.1b shows that the equilibrium market tightness is
greater in submarket x2 than x1; thus, parents are more likely to meet a child in
submarket x1. This induces the designer to allocate y2-parents in submarket x1,
resulting in NAM. As g(y1) increases, the equilibrium market tightness becomes
larger in submarket x1 than in x2, and thus the equilibrium sorting reverses to
PAM. Lastly, we can see from Panel B.1c that the total expected cost of imposing
NAM increases as the share of low-ability parents increases.33 This is intuitive,
since low-ability parents incur a greater cost for providing care than high-ability
parents. Therefore, the designer must pay greater transfers to low-ability parents
to satisfy the [PC]. □

Example B.2. (Positive Assortative Matching Holds). Figure B.2 considers an
environment that satisfies the condition presented in Corollary 1(i) to ensure that
PAM will arise in equilibrium. In this environment, we assume that the share of
low-needs children is equal to 0.8, and S(x, y) is a super-modular function with
revised values S(x2, y2) = 100, S(x1, y2) = 201, S(x2, y1) = 30 and S(x1, y1) = 191.
This set of primitives satisfies the following: 7 = S(x2,y2)−S(x2,y1)

S(x1,y2)−S(x1,y1)
≥ 1

πp(1/f(x2))
= 5.99

(a) Randomization Device (b) Market Tightness (c) Expected Transfers

Figure B.2: Monotone Sorting Holds

As Panel B.2a illustrates, the equilibrium sorting exhibits PAM for any value of
g(y1). Moreover, for sufficiently high values of g(y1), there is a perfect segregation
of the market such that all type-yi parents are allocated into submarket xi.

Panel B.2b shows that the market tightness in both submarkets remains flat for
a fair range of values of g(y1), even though the share of y2-parents being allocated
into submarket x1 decreases. This is due to two effects compensating: (i) θ⋆1 in-
creases as g(y1) increases, and (ii) θ⋆1 decreases as λ2⋆(x1) decreases. Similarly, for

33Though the cost structure is not necessary for the analysis of equilibrium allocations, it directly
determines the equilibrium total transfers. Panel B.1c uses the following cost function: c(x1, y1) =
15, c(x1, y2) = 1, c(x2, y1) = 20, c(x2, y2) = 15.
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θ⋆2. In addition, note that the market tightness is larger in submarket x1 than in
submarket x2, resulting in parents being more likely to meet a child in submarket
x2. This is in line with the intuition that the designer would like to allocate more
profitable parents into thicker submarkets.

Lastly, in Panel B.2c, the total expected cost of implementing PAM is decreasing
in g(y1), unlike the intuition presented in the previous example.34 Here, the total
expected transfers received by y1-parents (blue line) are increasing in g(y1), but
not enough to compensate for the decrease of the total expected transfers received
by y2-parents (orange line). □

B.2 Private Information

Example B.3. (Detailed explanation of Example 2). Figure B.3 illustrates the en-
vironment in Example B.1, where super-modularity in the surplus function is not
a sufficient condition for PAM.35 In all panels, the solid lines represent the equilib-
rium objects under the complete information, while the dashed lines correspond
to the private information. The cost function is super-modular with the following
values: c(x2, y2) = 15, c(x1, y2) = 1, c(x2, y1) = 20 and c(x1, y1) = 15. Notice, it
guarantees the existence of a separating menu of licenses under NAM, whereas
any equilibrium exhibiting PAM does not screen parents.

(a) Randomization Device (b) Market Tightness (c) Expected Transfers

Figure B.3: Monotone Sorting Fails under Private Information

In Panel B.3a, one can observe that the optimal randomization devices, λ1(x1)

and λ2(x2), are very similar for the complete and private information cases.36 As
a result, Panel B.3b represents that the optimal market tightness coincides at a

34The cost structure here is as follows: c(x1, y1) = 2, c(x1, y2) = 1, c(x2, y1) = 20, c(x2, y3) = 15.
35Recall that the primitives used in Example B.1 are as follows: f(x1) = 0.8, πp(θ) = 1

1+θ ,
S(x2, y2) = 191, S(x1, y2) = 201, S(x2, y1) = 40 and S(x1, y1) = 51.

36This similarity arises due to the values of the surplus and cost functions. If the values of the
cost function were to increase, it would lead to a notable disparity in the optimal randomization
rule between the complete and private information settings.
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fairly large interval for g(y1). However, when g(y1) is approximately in (0.8, 0.9),
the equilibrium sorting pattern is PAM under complete information, whereas it
is NAM with private information. To see the intuition, consider an equilibrium
menu of licenses that implements perfect sorting under complete information,
such that τ k(x) = c(x, yk). If the menu implements NAM, then type-y2 parent
mimics y1 and matches with child x2 instead of x1, and if it implements PAM,
type-y2 mimics y1 and matches with x1 instead of x2. The former misreport al-
lows parent y2 to (ex-post) gain as much as τ 1(x2) − c(x2, y2) = 5 whereas the
latter does τ 1(x1) − c(x1, y2) = 14. That is, y2 has stronger incentives to misreport
if the equilibrium sorting is PAM than when it is NAM. Thus, it is cheaper for the
designer to switch the equilibrium sorting from PAM to NAM for the (roughly)
specified region of g(y1). Notice, this intuition is in line with the counterpart of
Corollary 2(i).

Lastly, in Panel B.3c we observe that the total expected transfers received by
low-ability parents (blue lines) coincides under complete and private informa-
tion. The reason is that, for low-ability parents, transfers are pint-down by the
[PC] regardless of the information friction. For high-ability parents (orange lines),
total expected transfers are greater under private than complete information. This
is intuitive, since the designer must pay informational rents to incentivize high-
ability parents to reveal their type truthfully when informational fictions are in-
troduced. □

Example B.4. (Positive Assortative Matching Holds). Figure B.4 illustrates the
equilibrium objects of the environment in Example B.2 that satisfies the addi-
tional conditions presented in Corollary 3(i).37 We assume c(x, y) is a strong sub-
modular function with values c(x2, y2) = 13, c(x1, y2) = 1, c(x2, y1) = 20 and
c(x1, y1) = 2.

One can easily verify that the cost function guarantees the existence of a sep-
arating menu of licenses under PAM. In this case, the conditions over primitives
presented in Corollary 3(i) are satisfied:

S(x2, y2)− S(x2, y1)

S(x1, y2)− S(x1, y1)
= 7 =

c(x2, y1)− c(x2, y2)

c(x1, y1)− c(x1, y2)
≥ 1

πp (1/f(x2))
= 5.99

As Panel B.4a illustrates, the equilibrium sorting exhibits PAM for any value of
g(y1). Thus, PAM is robust to informational frictions, unlike Example B.3 where
we observe PAM andNAM. In Panel B.4b, we observe that the market tightness in

37Recall that the primitives used in Example B.2 are as follows: f(x1) = 0.8, πp(θ) = 1
1+θ ,

S(x2, y2) = 100, S(x1, y2) = 201, S(x2, y1) = 30 and S(x1, y1) = 191.
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both submarkets remains flat for a fair range of values of g(y1). Lastly, in Panel B.4c
we observe that the total cost of imposing PAM decreases with g(y1). Note that,
in this example, the equilibrium allocations are almost identical under complete
and private information.

(a) Randomization Device (b) Market Tightness (c) Expected Transfers

Figure B.4: Monotone Sorting Holds under Private Information

□
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C Appendix: Analysis of Complete Information

In this section, we prove the results for the complete information case. For each
parent yk with k = {1, 2}, the designer offers a licenses (λk, τ k). The designer
solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑

i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to:

[FC] τ k(x) ≥ 0 and λk(x) ≥ 0 for all (k, x), and
2∑

i=1

λk(xi) = 1 for all k = 1, 2.

[MT] θx =
1

f(x)
·

2∑
k=1

[
λk(x)

2∑
j=1

hk(yj)
]
, for all x.

[PC]
2∑

i=1

[
τ k(xi)− c(xi, yk)

]
λk(xi)π

p(θi) ≥ 0 , for all k = 1, 2.

Now, recall that πp(θ) = πc(θ)
θ

. Thus, the objective function can be written as:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑

i=1

πp
(
θi
) 2∑

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)

}

Next, by rearranging terms from the objective function:

2∑
i=1

πp
(
θi
) 2∑

k=1

u(xi, yk)λ
k(xi)g(yk)−

2∑
i=1

πp
(
θi
) 2∑

k=1

τ k(xi)λ
k(xi)g(yk)

⇒
2∑

i=1

πp
(
θi
) 2∑

k=1

u(xi, yk)λ
k(xi)g(yk)

−
[ 2∑

i=1

τ 1(xi)λ
1(xi)π

p
(
θi
)
g(y1) +

2∑
i=1

τ 2(xi)λ
2(xi)π

p
(
θi
)
g(y2)

]
At the optimum, we know that the [PC] hold with equality (see Proof of Propo-
sition 2):

2∑
i=1

τ k(xi)λ
k(xi)π

p(θi) =
2∑

i=1

c(xi, yk)λ
k(xi)π

p(θi) (C.1)
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Thus, by replacing EquationC.1 into the objective function, the optimization prob-
lem is:

max{
λk(x1),λk(x2)

}2

k=1

{
2∑

i=1

πp
(
θi
) 2∑

k=1

[
u(xi, yk)− c(xi, yk)

]
λk(xi)g(yk)

}

subject to feasibility constraints[FC] and market tightness[MT] defined above.
The following corollary is immediate:

Corollary C.1. In the first best, the randomization device
{
λk(x1), λ

k(x2)
}2

k=1
is inde-

pendent of whether we consider interim or ex-post participation constraints.

Proof. This follows from the fact that the objective function is independent of the
transfers after incorporating the participation constraints. □

C.1 Proof of Lemma 1

For each (x, k), let λk(x) be an arbitrary-feasible interior probability that generates
a total welfare equal to:

W
(
λ1(x1), λ

2(x1)
)
= πp(θ1) ·

[
g(y1) λ

1(x1) S(x1, y1)+
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
where:

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

g(y1)
(
1− λ1(x1)

)
+

(
1− g(y1)

)(
1− λ2(x1)

)
1− f(x1)

(C.2)

After trembling λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡ − ε1g(y1)
1−g(y1)

, ensuring
that the market tightness in each market remains constant, the new total welfare
is:

W
(
λ1(x1)+ε1, λ

2(x1)+ε2
)
= πp(θ1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε1 g(y1)

(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])
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Thus, the change in welfare is equal to:

∆W = W
(
λ1(x1) + ε1, λ

2(x1) + ε2
)
−W

(
λ1(x1), λ

2(x1)
)

= ε1 g(y1)
(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])︸ ︷︷ ︸
ZCI(θ1)

where θ1 and θ2 are defined as in Equation C.2. Note that, θ2 = 1−f(x1)θ1
1−f(x1)

, thus
ZCI can be written as a function of only θ1. It is easy to see that ZCI(θ1) is strictly
increasing in θ1. Therefore, ZCI(θmax

1 ) ≥ ZCI(θ1) ≥ ZCI(0) for any θ1 ∈ [0, θmax
1 ]

where θmax
1 = 1

f(x1)
. Now, we analyze three cases:

1. Suppose ZCI(θ1) > 0. Then, pick ε1 > 0 with ε2 = − ε1g(y1)
1−g(y1)

such that either
λ̂1(x1) ≡ λ1(x1) + ε1 = 1 or λ̂2(x1) ≡ λ2(x1) + ε2 = 0. In the former case,
λ̂1(x2) = 0 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and
λ̂2(x2) = 1. In both cases, the definition of PAM is satisfied.

2. Suppose ZCI(θ1) < 0. Then, pick ε1 < 0 with ε2 = − ε1g(y1)
1−g(y1)

such that either
λ̂1(x1) ≡ λ1(x1) + ε1 = 0 or λ̂2(x1) ≡ λ2(x1) + ε2 = 1. In the former case,
λ̂1(x2) = 1 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and
λ̂2(x2) = 0. In both cases, the definition of NAM is satisfied.

3. Suppose ZCI(θ1) = 0. We show that an interior randomization device can
not be an equilibrium. To see this, first tremble λ1(x1) by ε1, and calculate
welfare:

W
(
λ1(x1)+ε1, λ

2(x1)
)
= πp(θ̂1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̂2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε1g(y1)

[
πp(θ̂1) S(x1, y1)− πp(θ̂2) S(x2, y1)

]
where θ̂1 = θ1+

ε1g(y1)
f(x1)

, θ̂2 = θ2− ε1g(y1)
1−f(x1)

, and θ1, θ2 are defined as in Equation
C.2. Now, let’s tremble λ2(x1) by ε2, and calculate welfare:

W (λ2(x1), λ
2(x1)+ε2) = πp(θ̃1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̃2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε2

(
1− g(y1)

)[
πp(θ̃1) S(x1, y2)− πp(θ̃2) S(x2, y2)

]
where θ̃1 = θ1 +

ε2(1−g(y1))
f(x1)

, θ̃2 = θ2 − ε2(1−g(y1))
1−f(x1)

, and θ1, θ2 are defined as in
Equation C.2.
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For any small ε1 with ε2 ≡ ε1g(y1)
1−g(y1)

, it follows that θ̂1 = θ̃1 and θ̂2 = θ̃2. Pick
such ε2. Then, increasing λ1(x1) is marginally more profitable than increas-
ing λ2(x1) if and only if

πp(θ̂2) ·
[
S(x2, y2)− S(x2, y1)

]
− πp(θ̂1) ·

[
S(x1, y2)− S(x1, y1)

]︸ ︷︷ ︸
ZCI(θ̂1)

≥ 0

Since ZCI(θ̂1) > ZCI(θ1) = 0, then the inequality holds. Therefore, at least
one of the partial derivatives of W at

(
λ1(x1), λ

2(x1)
)
is non-zero, meaning

that
(
λ1(x1), λ

2(x1)
)
at ZCI(θ1) = 0 is not an equilibrium. This finishes the

proof.

C.2 Proof of Proposition 1

By assumptionS(x, y) is increasing in y, thusZCI(θ1) is increasing in θ1. Therefore,
items (i) to (iii) from the previous proof of Lemma 1 apply here.

C.3 Proof of Corollary 1

Notice that, ZCI(θ1) is increasing in θ1 reaching its minimum value at θ1 = 0, and
when θ1 = 0 it follows that πp(0) = 1 and θ2 =

1
1−f(x1)

. Therefore, fromProposition
1, we can ensure PAM by imposing that the following inequality must hold:

πp
( 1

1− f(x1)

)
·
[
S(x2, y2)− S(x2, y1)

]
−
[
S(x1, y2)− S(x1, y1)

]
≥ 0

Now,ZCI(θ1) reaches itsmaximumvalue at θ1 = 1
f(x1)

.Therefore, fromProposition
1, we can ensure NAM by imposing that the following inequality must hold:

[
S(x2, y2)− S(x2, y1)

]
− πp

( 1

f(x1)

)
·
[
S(x1, y2)− S(x1, y1)

]
≤ 0

C.4 Assortative Matching in Equilibrium

Under the light of the results above, we can characterize the equilibrium sorting
patterns. We will start by providing some auxiliary lemmas.

Lemma C.1. The rate of change in Welfare W
(
λ1(x1), λ

2(x1)
)
monotonically decreases

in λk(x1) for each k = 1, 2.
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Proof. Recall the total welfare:

W
(
λ1(x1), λ

2(x1)
)
= πp(θ1)·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
︸ ︷︷ ︸

EU1

+ πp(θ2) ·
[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
︸ ︷︷ ︸

EU2

where

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

1− θ1f(x1)

1− f(x1)

Fix λ−k(x1). Increasing λk(x1) by a small amount ε > 0, increases EU1 and θ1

linearly, and decreases EU2 and θ2 linearly. Recall that, πp(·) is a decreasing and
convex function, thus the rate of increase through πp(θ1) ·EU1 decreases, while the
rate of decrease through πp(θ2) · EU2 increases in λk(x1), for any k = 1, 2. □

Lemma C.1 is useful since it implies that ∂W(λ1(x1),λ2(x1))
∂λk(x1)

is monotonically de-
creasing. Thus, if it is zero at some λk′(x1), then it is negative at any λk(x1) if and
only if λk(x1) > λk′(x1) for any λ−k(x1). Note that the same analysis applies to any
pair (λ1(x1), λ

2(x1)) that yields the same market tightness. Now, another useful
lemma follows:

LemmaC.2. Fix (λ̂1(x1), λ̂
2(x1)). For any (λ̃1(x1), λ̃

2(x1)) such that θ1(λ̂1(x1), λ̂
2(x1)) =

θ1(λ̃
1(x1), λ̃

2(x1)) and λ̂1(x1) ≥ λ̃1(x1), the following holds:

∂W (λ1(x1), λ
2(x1))

∂λk(x1)
|(λ̂1(x1),λ̂2(x1))

≤ ∂W (λ1(x1), λ
2(x1))

∂λk(x1)
|(λ̃1(x1),λ̃2(x1))

Proof. Taking partial derivatives on welfare yields the followings:

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
=

g(y1) · V (λ1(x1), λ
2(x1)) + g(y1) ·

[
πp(θ1)S(x1, y1)− πp(θ2)S(x2, y1)

]

∂W (λ1(x1), λ
2(x1))

∂λ2(x1)
=(

1− g(y1)
)
· V (λ1(x1), λ

2(x1)) +
(
1− g(y1)

)
·
[
πp(θ1)S(x1, y2)− πp(θ2)S(x2, y2)

]
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with

V (λ1(x1), λ
2(x1)) =

πp′(θ1)

f(x1)
· EU1(λ

1(x1), λ
2(x1))−

πp′(θ2)

1− f(x1)
· EU2(λ

1(x1), λ
2(x1))

where EU1(λ
1(x1), λ

2(x1)) and EU2(λ
1(x1), λ

2(x1)) are defined as in Lemma C.1. It
is easy to verify that V (λ1(x1), λ

2(x1)) decreases as we move down on the market
tightness θ1, that is, as we increase λ1(x1) while decreasing λ2(x1). This implies
that the rate of change with respect to λ1(x1) decreases as one moves down on the
same market tightness, which finishes the proof. □

Now, by using Lemmas C.1 and C.2, we can characterize the equilibrium al-
location of parents across submarket step by step. We establish the equilibrium
allocation of parents when the sufficient conditions of Corollary 1 hold. Then we
leave the analysis for the case where the sufficient conditions are violated to the
readers.

PropositionC.1 (PositiveAssortativeMatching (PAM)). Suppose S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1)

≥
1

πp
(

1
f(x2)

) holds. The equilibrium sorting exhibits:

i. low-type PAM with λ1⋆(x1) ∈ (0, 1) and λ2⋆(x1) = 0 if

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=0} = 0 for some λ1⋆(x1) ∈ (0, 1) (C.3)

ii. perfect PAM with λ1⋆(x1) = 1 and λ2⋆(x1) = 0 if

∂W (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=1,λ2(x1)=0} ≥ 0 ≥ ∂W (λ1(x1), λ

2(x1))

∂λ2(x1)
|{λ1(x1)=1,λ2(x1)=0}

(C.4)

iii. high-type PAM with λ1⋆(x1) = 1 and λ2⋆(x1) ∈ (0, 1) if

∂W (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=1} = 0 for some λ2⋆(x1) ∈ (0, 1) (C.5)

Proof. By assumption, S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1)

≥ 1

πp
(

1
f(x2)

) , which implies that ZCI(θ1) ≥ 0

for any θ1. Therefore, starting from an initial allocation λ1(x1) = 0 and λ2(x1) = 0,
the designer first allocates y1-parents into submarket x1 until either parents are
exhausted or it is not profitable anymore. Accordingly, perfect PAM and high-
type PAM follows. □
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Proposition C.1 characterizes the equilibrium sorting patterns when the con-
ditions specified in Corollary 1(i) hold. One can easily characterize the equi-
librium distribution of parents across submarkets for NAM and extend it to the
case where the sufficient conditions are violated, with a parallel argument. As
is represented by the dashed-lines in Figure C.1, suppose that ZCI(θ̄1) = 0 for
some θ̄1 ∈ (0, 1/f(x1)). Then, for NAM (red-lines in Figure C.1), there exists ei-
ther, (i) λ̃1(x1) = 0 and λ̃2(x1) ≤ 1 or (ii) λ̃1(x1) > 0 and λ̃2(x1) = 1, with
θ̄1 = g(y1)λ̃1(x1)+(1−g(y1))λ̃2(x1)

f(x1)
. Similarly, for PAM (blue-lines in Figure C.1), there

exists either, (i) λ̂1(x1) ≤ 1 and λ̂2(x1) = 0 or (ii) λ̂1(x1) = 1 and λ̂2(x1) ≥ 0,
with θ̄1 = g(y1)λ̂1(x1)+(1−g(y1)λ̂2(x1)

f(x1)
. In what follows, we study each possible case

illustrated in Figure C.1.

Figure C.1: Possible Cases given ZCI(θ1)

(a) Case 1A

λ̃1(x1) = 0 and λ̃2(x1) ≤ 1

λ̂1(x1) ≤ 1 and λ̂2(x1) = 0

(b) Case 1B

λ̃1(x1) = 0 and λ̃2(x1) ≤ 1

λ̂1(x1) = 1 and λ̂2(x1) ≥ 0

(c) Case 2A

λ̃1(x1) ≥ 0 and λ̃2(x1) = 1

λ̂1(x1) = 1 and λ̂2(x1) ≥ 0

(d) Case 2B

λ̃1(x1) ≥ 0 and λ̃2(x1) = 1

λ̂1(x1) ≤ 1 and λ̂2(x1) = 0
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C.5 Proof of Proposition 2

The designer solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑

i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to [FC], [MT], and [PC]. We will show that at the optimal solution, the
participation constraints hold with equality. By contradiction, suppose that for
some license k, the [PC] holds with strict inequality at the optimum:

2∑
i=1

τ k(xi)λ
k(xi)π

p(θi) >
2∑

i=1

c(xi, yk)λ
k(xi)π

p(θi)

Then, the designer can decrease τ k(x1) and τ k(x2) by a small ε > 0 satisfying the
constraint while increasing the objective function. A contradiction. Therefore, the
optimal transfers can be pinned-down by the [PC] which hold with equality.
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D Appendix: Analysis of Private Information

First, it is useful to understand who has incentives to mimic whom under the
first best menu of licenses. Recall the incentive compatibility constraint [IC] for
k ̸= k′ = 1, 2:

2∑
i=1

[
τ k(xi) − c(xi, yk)

]
λk(xi)π

p(θi) ≥
2∑

i=1

[
τ k

′
(xi) − c(xi, yk)

]
λk′(xi)π

p(θi)

and the participation constraint [PC] for k = 1, 2:

2∑
i=1

[
τ k(xi)− c(xi, yk)

]
λk(xi)π

p(θi) ≥ 0

In the complete information case, [PC]s holdswith equality. Now, plugging [PC](k)
and [PC](k′) into [IC](k) yields the following inequality:

0 ≥
[
c(x1, yk′)− c(x1, yk)

]
λk′(x1)π

p(θ1) +
[
c(x2, yk′)− c(x2, yk)

]
λk′(x2)π

p(θ2)

Since c(x, y) is decreasing in y, the inequality holds for k = 1 but not for k =

2. Thus, under the first best, type-y2 parents have incentives to mimic type-y1
parents.

Next, we know that the [IC] for high-ability and the [PC] for low-ability par-
ents hold with equality in equilibrium (see Proof of Proposition 4):

[PC1]
2∑

i=1

[
τ 1(xi)− c(xi, y1)

]
λ1(xi)π

p(θi) = 0

[IC2]
2∑

i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) =
2∑

i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

Replacing [PC1] in [IC2]:

τ 2(x1)λ
2(x1)π

p(θ1)+τ 2(x2)λ
2(x2)π

p(θ2) = c(x1, y2)λ
2(x1)π

p(θ1)+c(x2, y2)λ
2(x2)π

p(θ2)+[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1) +
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)
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Now, replacing the restrictions into the objective function, the designer solves:

max
{λk(x1),λk(x2)}2k=1


2∑

i=1

πp
(
θi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]

−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

]
λ1(x2)π

p(θ2)g(y2)

}

subject to [FC], [MT], and

[AC] =


c(x2,y2)−c(x2,y1)
c(x1,y2)−c(x1,y1)

≥ 1

πp
(

1
f(x2)

) if λ2(x2) > λ1(x2)

c(x1,y2)−c(x1,y1)
c(x2,y2)−c(x2,y1)

≥ 1

πp
(

1
f(x1)

) if λ2(x2) < λ1(x2)
(D.1)

This additional constraint [AC] ensures that the [IC] for low-ability parents is
satisfied when the [IC] for high ability parents holds (see Proof of Proposition 4).

Corollary D.1. With private information, the randomization device
{
λk(x1), λ

k(x2)
}2

k=1

is independent of whether interim or ex-post participation constraints are implemented.

Proof. This follows from the fact that the objective function is independent of the
transfers after incorporating the participation constraints. □

D.1 Proof of Lemma 1 under Private Information

We can establish Lemma 1 for the private information case.

LemmaD.1. In the private information setting, for at least one of the licenses, the optimal
randomization rule yields a corner solution.

For each (x, k), let λk(x1) ∈ (0, 1) be an arbitrary-feasible interior probability
that generates a total welfare equal to:

Ŵ
(
λ1(x1), λ

2(x1)
)
= πp(θ1) ·

[
g(y1) λ

1(x1) S(x1, y1)+
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ2)g(y2)

where:

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

g(y1)
(
1− λ1(x1)

)
+

(
1− g(y1)

)(
1− λ2(x1)

)
1− f(x1)

(D.2)

48



As in the complete information, we tremble λ1(x1) by ε1 and λ2(x1) by ε2 such
that ε2 ≡ − ε1g(y1)

1−g(y1)
ensuring that the market tightness in each submarket remains

constant. The new total welfare is:

Ŵ
(
λ1(x1)+ε1, λ

2(x1)+ε2
)
= πp(θ1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ2)g(y2)

+ ε1g(y1)

{
πp(θ2)

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
− πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]}

Thus, the change in welfare is equal to:

∆Ŵ = ε1g(y1)

{
πp(θ2)

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
︸ ︷︷ ︸

ZPI(θ1)

}

where θ1 and θ2 are defined as in Equation D.2. As earlier, ZPI(θ1) is strictly in-
creasing in θ1. Therefore, ZPI(θmax

1 ) ≥ ZPI(θ1) ≥ ZPI(0) for any θ1 ∈ [0, θmax
1 ]

where θmax
1 = 1

f(x1)
. Now, we analyze three cases:

1. Suppose ZPI(θ1) > 0. Then, pick ε1 > 0 with ε2 ≡ − ε1g(y1)
1−g(y1)

such that either
λ̂1(x1) ≡ λ1(x1) + ε1 = 1 or λ̂2(x1) ≡ λ2(x1) + ε2 = 0. In the former case,
λ̂1(x2) = 0 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and
λ̂2(x2) = 1. In both cases, the definition of PAM is satisfied.

2. Suppose ZPI(θ1) < 0. Then, pick ε1 < 0 with ε2 ≡ − ε1g(y1)
1−g(y1)

such that either
λ̂1(x1) ≡ λ1(x1) + ε1 = 0 or λ̂2(x1) ≡ λ2(x1) + ε2 = 1. In the former case,
λ̂1(x2) = 1 and λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and
λ̂2(x2) = 0. In both cases, the definition of NAM is satisfied.

3. Suppose ZPI(θ) = 0. We show that an interior randomization device can
not be an equilibrium. To see this, first tremble λ1(x1) by ε1, and calculate
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welfare:

Ŵ
(
λ1(x1)+ε1, λ

2(x1)
)
= πp(θ̂1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̂2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ̂1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ̂2)g(y2)

+ ε1g(y1)
[
πp(θ̂1) S(x1, y1)− πp(θ̂2) S(x2, y1)

]
+ ε1g(y2)

{
πp(θ̂2)

[
c(x2, y1)− c(x2, y2)

]
− πp(θ̂1)

[
c(x1, y1)− c(x1, y2)

]}

where θ̂1 = θ1+
ε1g(y1)
f(x1)

, θ̂2 = θ2− ε1g(y1)
1−f(x1)

, and θ1, θ2 are defined as in Equation
D.2. Now, let’s tremble λ2(x1) by ε2, and calculate welfare:

Ŵ (λ2(x1), λ
2(x1)+ε2) = πp(θ̃1)·

[
g(y1)λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ̃2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ̃1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ̃2)g(y2)

+ ε2
(
1− g(y1)

)[
πp(θ̃1) S(x1, y2)− πp(θ̃2) S(x2, y2)

]
where θ̃1 = θ1 +

ε2(1−g(y1))
f(x1)

, θ̃2 = θ2 − ε2(1−g(y1))
1−f(x1)

, and θ1, θ2 are defined as in
Equation D.2.

For any small ε1 with ε2 ≡ ε1g(y1)
1−g(y1)

, it follows that θ̂1 = θ̃1 and θ̂2 = θ̃2. Pick
such ε2. Then, increasing λ1(x1) is marginally more profitable than increas-
ing λ2(x1) if and only if

πp(θ2)
[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
︸ ︷︷ ︸

ZPI(θ1)

≥ 0

Since ZPI(θ̂1) > ZPI(θ1) = 0, then the inequality holds. Therefore, at least
one of the partial derivatives of W at

(
λ1(x1), λ

2(x1)
)
is non-zero, meaning

that
(
λ1(x1), λ

2(x1)
)
at ZPI(θ1) = 0 is not an equilibrium. This finishes the

proof.
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D.2 Proof of Proposition 1 under Private Information

We can establish Proposition 1 for the private information case. Let θ̂1 be such that
ZPI(θ̂1) = 0, then the following result holds:

Proposition D.1. In the private information setting, let θ∗∗1 be the equilibrium market
tightness. (i) If θ∗∗1 > θ̂1 then the equilibrium sorting exhibits PAM. (ii) If θ∗∗1 < θ̂1 then
the equilibrium sorting exhibits NAM. (iii) θ∗∗1 = θ̂1 is never optimal.

By assumption S(x, y) is increasing in y, thusZPI(θ1) is increasing in θ1. There-
fore, items (i) to (iii) from the previous proof applies here.

D.3 Proof of Corollary 2

ZPI(θ1) is increasing in θ1 reaching its minimum value at θ1 = 0, and when θ1 = 0

it follows that πp(0) = 1 and θ2 =
1

1−f(x1)
. Therefore, from Proposition D.1, we can

ensure PAM by imposing that the following inequality must hold:

πp

(
1

f(x2)

)[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
≥ 0

Now,ZPI(θ1) reaches itsmaximumvalue at θ1 = 1
f(x1)

.Therefore, fromProposition
D.1, we can ensure NAM by imposing that the following inequality must hold:

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
− πp

(
1

f(x1)

)[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
≤ 0

D.4 Assortative Matching in Equilibrium

Lemmas C.1 and C.2 carry over to the case of private information:

Lemma D.2. The rate of change in Welfare Ŵ
(
λ1(x1), λ

2(x1)
)
monotonically decreases

in λk(x1) for each k = 1, 2.
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Proof. Recall the welfare of children:

Ŵ
(
λ1(x1), λ

2(x1)
)
= πp(θ1)·{

g(y1) λ
1(x1) S(x1, y1) +

(
1− g(y1)

) [
λ2(x1) S(x1, y2)− λ1(x1)

(
c(x1, y1)− c(x1, y2)

)]}
︸ ︷︷ ︸

EÛ1

+ πp(θ2)·{
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) [(
1− λ2(x1)

)
S(x2, y2)−

(
1− λ1(x1)

)(
c(x2, y1)− c(x2, y2)

)]}
︸ ︷︷ ︸

EÛ2

where

θ1 =
g(y1)λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

1− θ1f(x1)

1− f(x1)

Fix λ−k(x1). Increasing λk(x1) by a small amount ε > 0, increases EÛ1 and θ1, and
decreases EÛ2 and θ2 linearly. Since πp(·) is a decreasing and convex function, the
rate of increase through πp(θ1) ·EÛ1 decreases, while the rate of decrease through
πp(θ2) · EÛ2 increases in λk(x1), for any k = 1, 2. □

LemmaD.2 implies that ∂Ŵ(λ1(x1),λ2(x1))
∂λk(x1)

is monotonically decreasing. Now, an-
other useful lemma follows:

LemmaD.3. Fix
(
λ̂1(x1), λ̂

2(x1)
)
. For any

(
λ̃1(x1), λ̃

2(x1)
)
such that θ1

(
λ̂1(x1), λ̂

2(x1)
)
=

θ1(λ̃
1(x1), λ̃

2(x1)
)
and λ̂1(x1) ≥ λ̃1(x1), the following holds:

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λk(x1)
|(

λ̂1(x1),λ̂2(x1)
) ≤

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λk(x1)
|(

λ̃1(x1),λ̃2(x1)
)

Proof. Taking partial derivative on welfare under private information yields the
followings:

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λ1(x1)
=

g(y1) · V (λ1(x1), λ
2(x1)) + g(y1) ·

[
πp(θ1)S(x1, y1)− πp(θ2)S(x2, y1)

]
−(

1− g(y1)
)
·
{
πp(θ1)

[
c(x1, y1)− c(x1, y2)

]
− πp(θ2)

[
c(x2, y1)− c(x2, y2)

]}
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∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λ2(x1)
=(

1− g(y1)
)
· V (λ1(x1), λ

2(x1)) +
(
1− g(y1)

)
·
[
πp(θ1)S(x1, y2)− πp(θ2)S(x2, y2)

]
with

V (λ1(x1), λ
2(x1)) =

πp′(θ1)

f(x1)
· EÛ1(λ

1(x1), λ
2(x1))−

πp′(θ2)

1− f(x1)
· EÛ2(λ

1(x1), λ
2(x1))

where EÛ1(λ
1(x1), λ

2(x1)) and EÛ2(λ
1(x1), λ

2(x1)) are defined as in Lemma D.2.

Notice, plugging V (λ1(x1), λ
2(x1)) into

∂Ŵ
(
λ1(x1),λ2(x1)

)
∂λ1(x1)

yields the following:

∂Ŵ
(
λ1(x1), λ

2(x1)
)

∂λ1(x1)
=

g(y1)(
1− g(y1)

) ·
∂Ŵ

(
λ1(x1), λ

2(x1)
)

∂λ2(x1)
+ g(y1) · ZPI(θ1)

It is easy to see that V (λ1(x1), λ
2(x1)) is the same as the complete information

case, and thus, it decreases as we move down on the market tightness θ1. In other
words, as we increase λ1(x1)while decreasing λ2(x1), V (λ1(x1), λ

2(x1)) decreases.
This implies that the rate of change with respect to λ1(x1) decreases as one moves
down on the same market tightness, which finishes the proof. □

Now, by using LemmasD.2 andD.3, we characterize the equilibriumallocation
of parents across submarkets as in the complete information case.

Proposition D.2 (Positive Assortative Matching(PAM)). Suppose that
S(x2,y2)−S(x2,y1)+

g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+
g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) holds. The equilibrium exhibits:

i. low-type PAM with λ1⋆(x1) ∈ (0, 1) and λ2⋆(x1) = 0 if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ2(x1)=0} = 0 for some λ1⋆(x1) ∈ (0, 1) (D.3)

ii. perfect PAM with λ1⋆(x1) = 1 and λ2⋆(x1) = 0 if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ1(x1)
|{λ1(x1)=1,λ2(x1)=0} ≥ 0 ≥ ∂Ŵ (λ1(x1), λ

2(x1))

∂λ2(x1)
|{λ1(x1)=1,λ2(x1)=0}

(D.4)

iii. high-type PAM with λ1⋆(x1) = 1 and λ2⋆(x1) ∈ (0, 1) if

∂Ŵ (λ1(x1), λ
2(x1))

∂λ2(x1)
|{λ1(x1)=1} = 0 for some λ2(x1)

∗ ∈ (0, 1) (D.5)
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Proof. By assumption,
S(x2,y2)−S(x2,y1)+

g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+
g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) holds, which

implies that ZPI(θ1) ≥ 0 for any θ1. Therefore, starting from an initial allocation
λ1(x1) = 0 and λ2(x1) = 0, the designer first allocated y1-parents into submarket
x1 until either parents are exhausted or itis not profitable anymore. Accordingly,
perfect PAM and high-type PAM follows. □

Proposition D.2 characterizes the equilibrium sorting patterns when the con-
ditions specified in Corollary 2(i) hold. We leave the analysis of the cases where
the sufficient conditions are violated to the readers.

D.5 Proof of Proposition 4

The designer solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑

i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to [FC], [MT],[PC], and [IC]. Wewill analyze the constraints in this max-
imization problem.

First, consider the [IC]s for low- and high-ability parents, respectively:

2∑
i=1

c(xi, y1)
[
λ2(xi)− λ1(xi)

]
πp(θi) ≥

2∑
i=1

[
τ 2(xi) λ

2(xi)− τ 1(xi) λ
1(xi)

]
πp(θi)

2∑
i=1

[
τ 2(xi) λ

2(xi)− τ 1(xi) λ
1(xi)

]
πp(θi) ≥

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θi)

From these two inequalities, we get the following expression:

2∑
i=1

c(xi, y1)
[
λ2(xi)− λ1(xi)

]
πp(θi) ≥

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θi)

⇒ c(x1, y1)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y1)

[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥

c(x1, y2)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ2)

⇒
[
c(x2, y1)− c(x2, y2)

]
·
[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥[

c(x1, y2)− c(x1, y1)
]
·
[
λ2(x1)− λ1(x1)

]
πp(θ1)
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Note that λ2(x1) − λ1(x1) = 1 − λ2(x2) − [1 − λ1(x2)] = λ1(x2) − λ2(x2), hence
replacing in the previous inequality yields:

[
c(x2, y1)− c(x2, y2)

]
·
[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥[

c(x1, y1)− c(x1, y2)
]
·
[
λ2(x2)− λ1(x2)

]
πp(θ1) (D.6)

This inequality depends on the sign of the term [λ2(x2) − λ1(x2)], which defines
PAM and NAM. Hence, consider the following cases:

• Case 1: Suppose λ2(x2)− λ1(x2) is positive. Then, Equation D.6 reduces to:[
c(x2, y1)− c(x2, y2)

]
·πp(θ2) ≥

[
c(x1, y1)− c(x1, y2)

]
·πp(θ1)which is satisfied

if the following holds:

c(x2, y2)− c(x2, y1)

c(x1, y2)− c(x1, y1)
≥ 1

πp (1/f(x2))
(D.7)

• Case 2: Suppose λ2(x2)− λ1(x2) is negative. Then, Equation D.6 reduces to:[
c(x1, y1)− c(x1, y2)

]
·πp(θ1) ≥

[
c(x2, y1)− c(x2, y2)

]
·πp(θ2)which is satisfied

if the following holds:

c(x1, y2)− c(x1, y1)

c(x2, y2)− c(x2, y1)
≥ 1

πp (1/f(x1))
(D.8)

Now, we show that the [PC] for low-ability parents, and the [IC] for high-ability
parents imply the [PC] for high-ability parents:

2∑
i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) ≥
2∑

i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

≥
2∑

i=1

[
τ 1(xi)− c(xi, y1)

]
λ1(xi)π

p(θi) ≥ 0

Thus, we can ignore the [PC] for high-ability parents.

Next, suppose that the [IC] for high-ability parents holds with strict inequality:

2∑
i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) >
2∑

i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

Then, the designer can decrease τ 2(x1) and τ 2(x2) by a small ε > 0 satisfying the
constraint while increasing the objective function. A contradiction. Therefore, the
[IC] for high-ability parents holds with equality at the optimum.
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Similarly, suppose that the [PC] for low-ability parents holds with strict in-
equality:

2∑
i=1

[
τ 1(xi)− c(xi, y1)

]
λ1(xi)π

p(θi) > 0

Then, the designer can decrease τ 1(x1) and τ 1(x2) by a small ε > 0 satisfying the
constraint while increasing the objective function. A contradiction. Therefore, the
[PC] for low-ability parents holds with equality at the optimum.

Lastly, we show that the [IC] for high-ability parents combined with Equations
D.7 and D.8 imply the [IC] for low-ability parents. Thus, consider the [IC] for
high-ability parents:

2∑
i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) =
2∑

i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

⇒
2∑

i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ
1(xi)

]
πp(θi) =

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θi)

The right-hand side of the previous equation can be written as:

c(x1, y2)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ2)

⇒ c(x2, y2)
[
λ2(x2)− λ1(x2)

]
πp(θ2)− c(x1, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ1)

⇒
[
c(x2, y2)π

p(θ2)− c(x1, y2)π
p(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
Thus, the [IC] for high-ability parents can be written as:

2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ
1(xi)

]
πp(θi) =[

c(x2, y2)π
p(θ2)− c(x1, y2)π

p(θ1)
]
·
[
λ2(x2)− λ1(x2)

]
As previously, we need to consider the following cases:

• Case 1: Suppose λ2(x2) − λ1(x2) is positive. Equation D.7 ensures that the
following inequality holds:

[
c(x2, y1)− c(x2, y2)

]
πp(θ2) ·

[
λ2(x2)− λ1(x2)

]
≥[

c(x1, y1)− c(x1, y2)
]
πp(θ1) ·

[
λ2(x2)− λ1(x2)

]
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After some algebra:

[
c(x2, y1)π

p(θ2)− c(x1, y1)π
p(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
≥[

c(x2, y2)π
p(θ2)− c(x1, y2)π

p(θ1)
]
·
[
λ2(x2)− λ1(x2)

]
Which implies the [IC] for low-ability parents:

[
c(x2, y1)π

p(θ2)− c(x1, y1)π
p(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
≥

2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ
1(xi)

]
πp(θi)

• Case 2: Suppose λ2(x2) − λ1(x2) is negative. Equation D.8 ensures that the
following inequality holds:

[
c(x1, y1)− c(x1, y2)

]
πp(θ1) ·

[
λ1(x2)− λ2(x2)

]
≥[

c(x2, y1)− c(x2, y2)
]
πp(θ2) ·

[
λ1(x2)− λ2(x2)

]
After some algebra:

[
c(x2, y1)π

p(θ2)− c(x1, y1)π
p(θ1)

]
·
[
λ1(x2)− λ2(x2)

]
≥[

c(x2, y2)π
p(θ2)− c(x1, y2)π

p(θ1)
]
·
[
λ1(x2)− λ2(x2)

]
Which implies the [IC] for low-ability parents:

[
c(x2, y1)π

p(θ2)− c(x1, y1)π
p(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
≥

2∑
i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ
1(xi)

]
πp(θi)

Therefore, we can drop the [IC] for low-ability parents.
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E Appendix: Analysis of Extension

E.1 Continuous Type of Parents

First, let’s rewrite the constraints the designer faces when solving Equation 6:

[FC] τ(x, y) ≥ 0 and λ(x, y) ≥ 0 for all (x, y), and
2∑

i=1

λ(xi, y) = 1 for all y ∈ Y.

[MT] θi =
1

f(x)
·

y∫
y

λ(x, y)g(y) dy , for all i ∈ {1, 2}

[PC]
2∑

i=1

[
τ(xi, y)− c(xi, y)

]
λ(xi, y)π

p(θi) ≥ 0 , for all y ∈ Y.

E.1.1 Proof of Lemma 2

Let λ(x, y) be an arbitrary interior allocation for any y, that is, λ(x1, y) ∈ (0, 1),
and thus λ(x2, y) = 1 − λ(x1, y) ∈ (0, 1) for any y by [FC]. Define a perturbation
function ε : Y → (0, 1) such that

∫
y∈Y

ε(y)g(y)dy = 0.

Consider the allocations λ(y) ≡
(
λ(x1, y), λ(x2, y)

)
and λ̃(y) ≡

(
λ(x1, y) −

ε(y), λ(x2, y) + ε(y)
)
. Notice, the market tightness derived by allocations λ(y) and

λ̃(y) is the same: θi = 1
f(xi)

·
∫

y∈Y
λ(xi, y)g(y)dy for i = 1, 2. The change in welfare

between these two allocations is:

W (λ̃)−W (λ) ≡ ∆W =

y∫
y

[
πp(θ2)S(x2, y)− πp(θ1)S(x1, y)

]︸ ︷︷ ︸
ẐCI(y|θ)

ε(y)g(y)dy,

where θ = (θ1, θ2). Note that ẐCI(y|θ) is continuous but not necessarilymonotone,
provided that S(x, y) is continuous in y for all x.

Now, let Figure E.1 be an arbitrary representation of ẐCI(y|θ), and consider
ε(y) defined as follows:∫

y∈[y,y1]

ε(y)g(y)dy = 0,

∫
y∈[y1,y2]

ε(y)g(y)dy = 0, and
∫

y∈[y2,y]

ε(y)g(y)dy = 0

andmore importantly, ∂ε(y)/∂y > 0 for y ∈ Y \[y1, y2] and ∂ε(y)/∂y < 0 for y ∈ [y1, y2].38

38Please refer to y1 and y2 defined in Figure E.1, here and henceforth.
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Figure E.1: Change in Welfare - Extension

Thus, the change in welfare is:∫
y∈[y,y1]

ẐCI(y|θ)ε(y)g(y)dy +

∫
y∈[y1,y2]

ẐCI(y|θ)ε(y)g(y)dy +

∫
y∈[y2,y]

ẐCI(y|θ)ε(y)g(y)dy.

Since ẐCI(y|θ) is monotonically increasing over the interval [y, y1] choosing
ε(y) to be monotonic increasing ensures that the first term above is positive. Sim-
ilarly, each term can be shown to be positive, which collectively guarantees a wel-
fare improvement over the interior allocation λ(x, y).39 The analysis holds for any
interior allocation λ(x, y) ∈ (0, 1) over any arbitrary subset Y ′ ⊆ Y .

Lemma2 implies the following: “Given an equilibriummarket tightness (θ∗1, θ∗2),
the optimal allocation is always on the corner, that is, λ(x1, y) ∈ {0, 1}”. Specifi-
cally, the following yields the optimal allocation:

Corollary E.1. Let θ∗ ≡ (θ∗1, θ
∗
2) be the equilibriummarket tightness. Suppose ẐCI(y|θ∗)

is as in Figure E.1. Then the optimal allocation λ∗(x, y) is as follows: λ∗(x1, y) = 1 −
λ∗(x2, y) and:

λ∗(x2, y) =

{
0 y ∈ [y, z1] ∪ [z2, z3]

1 y ∈ [z1, z2] ∪ [z3, y]

for some z1, z2, z3 such that y < z1 < y1 < z2 < y2 < z3 < y as in Figure E.2.

39Notice, one can always find a such an ε(y) through a very small perturbation around interior
λ(x, y).
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Figure E.2: Optimal Allocation - Extension

Proof. By Lemma 2, a monotone increasing perturbation of λ(y) over the interval
[y, y1] such that

∫
y∈[y,y1]

ε(y)g(y)dy = 0 guarantees that
∫

y∈[y,y1]
ẐCI(y|θ)ε(y)g(y)dy >

0. Since ε(y) monotone increases and sums up to 0, there exists z ∈ (y, y1) such
that ε(y) ≤ 0 if and only if y ≤ z. This implies λ(x1, y) ≤ λ̃(x1, y) if and only
if y ≤ z. Thus, moving towards PAM only in the interval [y, y1] increases the
welfare. Therefore, one can keep increasing the welfare only over the region [y, y1]

by trembling as much as possible, which proves that there exists z1 ∈ (y, y1) such
that λ∗(x1, y) = 1 for y ∈ [y, z1], and λ∗(x1, y) = 0 for y ∈ [z1, y1]. Analogously, the
optimal allocation for other regions follows. □

E.1.2 Proof of Proposition 5

Notice that, if πp(θ∗)S(x, y) is super-modular given equilibrium θ∗ = (θ∗1, θ
∗
2), then

ẐCI(y|θ∗) is increasing everywhere. Thus, Corollary E.1 implies that the optimal
allocation is such that λ(x1, y) = 1 for y ≤ ŷPAM for some ŷPAM ∈ (y, y), and
λ(x1, y) = 0 otherwise. Moreover, given θ∗1 is the equilibrium market tightness in
submarket x1, ŷPAM is such that θ∗1 = G(ŷPAM )/1−f(x2). Proof of part (ii) analogously
follows.

E.1.3 Proof of Corollary 4

Recall ẐCI(y|θ) = πp(θ2)S(x2, y)− πp(θ1)S(x1, y). One can easily see that ẐCI(y|θ)
increases in θ1. Taking derivative of ẐCI(y|θ)with respect to y yields the following:

∂ẐCI(y|θ)
∂y

≡ ẐCI
y (y|θ) = πp(θ2)Sy(x2, y)− πp(θ1)Sy(x1, y).

Since Sy(y|θ) > 0, it follows that ẐCI
y (y|θ) also increases in θ1, and thus assigns its

minimum value at θ1 = 0 and θ2 = 1/f(x2). That is, ẐCI
y (y|θ1 = 0, θ2 = 1/f(x2)) ≤

ẐCI
y (y|θ) for any θ and any y.
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Let ỳ := argmin
y∈Y

Sy(x1, y) − πp
(
1/1−f(x1)

)
Sy(x2, y), that is, ỳ is the argument

at which ẐCI
y (y|θ1 = 0, θ2 = 1/f(x2)) assigns its minimum value. Now, notice the

following: πp
(
1/f(x2)

)
Sy(x2, ỳ) − Sy(x1, ỳ) ≥ 0 implies that ẐCI

y (y|θ) ≥ 0 for any θ

and any y ∈ [y, y]. As a result, πp(θ∗)S(x, y) is super-modular at equilibrium θ∗,
and the optimal sorting exhibits PAM by Proposition 5(i). Therefore, the planner
simply optimizes the welfare by solving the following problem:

max
ŷ∈Y

πp
(G(ŷ)

f(x1)

) ŷ∫
y

S(x1, y)g(y)dy + πp
( 1−G(ŷ)

1− f(x1)

) y∫
ŷ

S(x2, y)g(y)dy,

which finishes the proof of Corollary 4 (i). The proof of (ii) follows analogously.

E.2 Improvement in the Meeting Technology

Recall the sorting condition under complete information for a givenmeeting tech-
nology πp:

ZCI(θ1|πp) = πp(θ2)
[
S(x2, y2)− S(x2, y1)

]︸ ︷︷ ︸
∆S2

−πp(θ1)
[
S(x1, y2)− S(x1, y1)

]︸ ︷︷ ︸
∆S1

.

If the equilibrium sorting is PAM, then the equilibrium θ∗1 is such thatZCI(θ∗1|πp) >

ZCI(θ1|πp) = 0 and θ∗1 > θ1. Note that
(
πp(θ1)/πp(θ2)

)
=

(
∆S2/∆S1

)
.

E.2.1 Proof of Proposition 6

Take an arbitrary π̂p ∈ Πp such that πp ▷ π̂p. Notice ZCI(θ1|π̂p) = 0 if and only if(
π̂p(θ1)/π̂p(θ2)

)
=

(
∆S2/∆S1

)
=

(
πp(θ1)/πp(θ2)

)
. It is easy to verify that:

π̂p(θ1)

π̂p(θ2)
≤ πp(θ1)

πp(θ2)
if and only if θ1 ≤ 1,

which holds with equality if θ1 = θ2 = 1. In short, given any market tightness
θ1 and θ2 ≡

(
1−f(x1)θ1

)
/
(
1−f(x1)

)
, the ratio of meeting probabilities in submarkets

x1 and x2, gets flatter as the technology improves (as can be seen in Figure E.3).
Thus, a super-modular S(x, y) implies θ1 < θ1 < θ∗1.

Recall that the meeting technology gets flatter everywhere at an improved tech-
nology, that is, let ∂πp(θ)/∂θ ≤ ∂π̂p(θ)/∂θ for any θ ∈ [0,min{1/f(x1), 1/1−f(x1)}] given
f(x1). Notice, Lemma C.1 also implies that ∂W(λ1(x1),λ2(x1))/∂λk(xi) is monotonically
decreasing for any i = 1, 2 and any k = 1, 2. Given πp, let θ∗i = min{θ∗1, θ∗2} and
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Figure E.3: Monotone Comparative Statics for the Meeting Technology

thus θ∗i ≤ 1 ≤ θ∗j . Therefore,

∂W (λ1(x1), λ
2(x1))

∂λk(xi)
|θi=θ∗i

= 0 ≥ ∂W (λ1(x1), λ
2(x1))

∂λk(xi)
|θi=1

for some k = 1, 2.40 The inequality becomes strict unlessmin{θ∗1, θ∗2} = max{θ∗1, θ∗2}.
Suppose that is the case from now on.

Thus, at equal market tightness where the parents-to-children ratio is equal
to 1 in both market, the designer would like to allocate some of type-k parents
into submarket xj because ∂W (λ)/∂λk(xi)|θi=1 < 0. Doing so will have two effects
as in the proof of Lemma C.1: congestion and decongestion effects, which link to
the probability of meeting given the technology, and the surplus effect. Notice
the surplus effect is linear, whereas the meeting technology is convex. Hence,
decreasing λk(xi) at θi = 1 increases the probability of meeting in submarket-xi

and decreases in submarket-xj at different and non-constant rates.
Now, for an improved technology π̂p defined above, the congestion and decon-

gestion effects become less pronounced, leading to less divergence from the equal
market tightness θi = 1 = θj . Let θ∗∗i be the equilibrium market tightness with π̂p.
Therefore, |1 − θ∗∗i | < |1 − θ∗i |, which simply implies θ1 < θ∗∗1 . The proof follows
analogously for a submodular S(x, y) and NAM.

40For a supermodular S(x, y), consider the corner (λ1(x1), λ
2(x1)) that exhibits PAM and θ1 =

1 = θ2; that is, either λ1(x1) = 1 and λ2(x1) ∈ [0, 1), or λ1(x1) ∈ (0, 1) and λ2(x1) = 0. Consider
analogous λ’s for submodular S(xi, yj).
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