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Abstract

This paper studies the two-sided dynamic matching problem that occurs
in the US foster care system. In this market, foster parents and foster children
can form reversible matches, which may separate, continue in their reversible
state, or transition to permanency via adoption. I first present an empirical
analysis that yields new stylized facts on the match transition of children in
foster care. Thereafter, I develop a two-sided search and matching model
used to rationalize the empirical facts and carry out model predictions. In-
terestingly, I find that the presence of a financial penalty on adoption exacer-
bates the intrinsic disadvantage (being less preferred by foster parents) faced
by children with a disability, and it also creates incentives for high-quality
matches to not transit to adoption.
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dad Javeriana, Pontificia Universidad Católica de Chile, Universidad Diego Portales, Universidad
del Rosario, Universidad de Chile-CEA, and the 4th Workshop on Mechanism Design for Social
Good. I benefited from many discussions with Hector Chade, Amanda Friedenberg, Kelly Bishop,
Alejandro Manelli, Ahmet Altinok, Gustavo Ventura, Natalia Kovrijnykh and Galina Vereshchag-
ina. Data used were made available by the National Data Archive on Child Abuse and Neglect,
Cornell University, Ithaca, NY, and have been used with permission. Data from the Adoption and
Foster Care Analysis and Reporting System (AFCARS) were originally collected by the Children’s
Bureau. The collector of the original data, the funder, the Archive, Cornell University, and their
agents or employees bear no responsibility for the analyses or interpretations presented here. The
views and conclusions presented in this paper are exclusively of the author and do not necessarily
reflect those of Banco de México. All errors are my own.
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1 Introduction

Each year more than a half-million children spend at least one day in the US fos-
ter care system, a federal program that costs taxpayers almost US$30 billion dol-
lars annually. The foster care system provides out-of-home care for children re-
moved from their homes due to abuse, maltreatment, neglect, or other reasons.1

While in foster care, children are placed in institutional care or foster family homes
(commonly known as foster parents),2 and can experience placement separation
when move from one foster home to another, or from a foster home to institu-
tional care. The stay in foster care is meant to be temporary until children can
reunite with their birth families, but when reunification is not possible, children
are relinquished for adoption.3 Each year, close to 18% of children in foster care
are at risk of experiencing long-term care if they are not adopted. In fact, more
than 20, 000 children leave foster care each year without an adoptive family, and
out of those children, less than 3% will earn a college degree, and almost 20%
will become homeless.4 Even though adoption is a preferred alternative to long-
term care,5 parents in the foster care system face a financial penalty on adoption
since the monthly payments they received (from the state child welfare agency)
are lower as an adoptive parent than as a foster parent, and often fall to zero.
Moreover, parents are responsible for the medical and educational expenditures
of adopted children, while for children being fostered, these expenses are covered
by the state child welfare agency.

This paper studies both, theoretically and empirically, the two-sided dynamic
matching problem that occurs in the US foster care system. In this market, fos-
ter parents and foster children can form reversible matches, which may separate,
continue in their reversible state, or transition to permanency via adoption. I start
by presenting an empirical analysis that yields new stylized facts related to match

1A child can enter foster care for several reasons such as sexual or physical abuse, parents’ drug
or alcohol addictions, parents’ incarceration, parents’ inability to provide care, parents’ death,
inadequate housing, abandonment, child’s behavioral problem, or child’s addiction.

2Foster homes are private homes licensed to provide 24-hour care for children in a family-
based environment. Institutional care are licensed facilities that provide 24-hour care for several
children at once (groups from seven to twenty), and it includes group homes, shelter care, and
other institutions.

3By federal law, if a child has been in foster care for at least 15 of the last 22 months, the process to
terminate her parental rights must be started immediately. Further, a judge can decide to terminate
parental rights at any moment in time if it is in the best interest of the child.

4Source: National Foster Youth Institute.
5Adoption is a better alternative to long-term care for two main reasons. First, maintaining a

child in long-term care is more expensive than adoption (Barth, 1993; Barth et al., 2006; Hansen,
2008). Second, adoption generates better outcomes for children. Triseliotis (2002) and Hansen
(2008) show that children who are adopted exhibit better social and educational outcomes.
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transitions of children in foster care and their exit through adoption. Thereafter,
I develop a two-sided search and matching model where children are heteroge-
neous in their disability status, children search for parents while matched to an-
other parent, matches differ in their quality, and parents receive a smaller pay-
off when adopting than fostering (capturing the financial penalty on adoption).
The theoretical model will allows us to understand why certain children are more
likely to have their matches separated and why certain children are less likely to
be adopted. In addition, the penalty on adoption might have a different effect on
certain children, and it might influence the type of matches that transit to adop-
tion (in terms of match quality). The main insight of the theoretical model is that
parents face the following trade-off when deciding to adopt: receive the adop-
tion penalty in exchange for eliminating the likelihood that the child separates
the match in the future.6 Hence, match separations play a crucial role in adoption
by influencing the incentives of foster parents to adopt. My main result is that
the penalty on adoption exacerbates the disadvantage faced by children with a
disability (being less preferred by parents), and it also creates incentives for high-
quality matches to not transit from a reversible fostering to adoption.

Using a rich panel dataset, describing the universe of children relinquished for
adoption in the US foster care system over the period 2010 to 2016, I first docu-
ment that the presence of a disability: (Fact 1) decreases the probability that a child
transits to permanency via adoption, (Fact 2) increases the probability that a foster
placement separates, (Fact 3) decreases the probability that a child transits from in-
stitutional care to a foster home (becomes foster matched), and (Fact 4) increases
the probability that a child transits from a foster home to institutional care (be-
comes unmatched). I focus my analysis on disability for two reasons.7 First, most
of the efforts made to increase adoption target children with a disability. Second,
the adoption penalty might be higher for children with a disability as parents are
responsible for higher medical expenditures. It is important to highlight that with
the data available for the analysis is not possible to make any statement regarding
what type of matches, in terms of match quality, are more likely to form, separate,
or transit to adoption. Thus, the theoretical model will be used not only to have a

6The empirical literature suggests that decreasing the adoption penalty would increase adop-
tion rates. Bishop and MacDonald (2024) analyze a policy change in the state of Minnesota that
eliminated the financial penalty on adoption for children aged six and older, finding that the prob-
ability of adoption increased after the implementation. Argys and Duncan (2012) show that when
the difference between the foster and adoption monthly payments decreases, a child’s probability
of adoption increases.

7The empirical specification and theoretical model can be used to study the effect of other ob-
servable characteristics of the child, such as gender, race, and ethnicity.
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better understanding of the empirical facts aforementioned but it will also allow
us to establish how the match transition of children is affected by match quality
which is not observable to the econometrician.

To analyze how different forces interact in the agents’ decisions of forming a
foster match, separating a foster match, and transiting to permanency via adop-
tion, I develop a dynamic matching model with search frictions (it takes time to
find a match) and non-transferable utility (transfers are exogenously given). Chil-
dren and parents can form two types of matches: foster (reversible) and adop-
tion (irreversible). The setting assumes that (a) children are heterogeneous (with
and without a disability), (b) agents must be foster matched before forming an
adoption match, (c) parents receive a smaller per-period payoff when adoption
matched than when foster matched, and (d) matches differ in their quality (low
or high). Children and parents prefer matches of greater quality, and parents
prefer children without a disability to children with a disability. The timing is as
follows. Every period, when a child (unmatched or foster matched) and parent
meet (unmatched only), agents draw a match quality. Before deciding whether
to form a foster match, they observe only a noisy signal about this quality. A fos-
ter match forms if and only if both accept. If a new foster match forms, any old
foster match dissolves. The uncertainty about the quality resolves once a foster
match forms, and it remains constant throughout the match. After observing the
match quality, agents decide whether to destroy the foster match (and become
unmatched), transit to adoption, or remain foster matched.

Using the theoretical model, I disentangle the driving forces behind the afore-
mentioned empirical facts, establish sufficient conditions on primitives for the
empirical facts to emerge in equilibrium, and derive other equilibrium proper-
ties about match quality. Regarding separations, I find that the increase in the
probability of foster match separation due to a disability (Fact 2) depends on two
driving forces working in opposite directions. On the one hand, children with a
disability are more likely (relative to children without a disability) to have a fos-
ter match separated after the uncertainty over the quality of the match is resolved,
which itself makes them more likely to separate. On the other hand, children with
a disability are less likely (relative to children without a disability) to form a new
foster match, which itself makes them less likely to separate. Hence, Fact 2 suggests
that the former driving force prevails in equilibrium: children with a disability
are more likely to have a foster match separated because parents matched to these
children are more likely to separate once the true quality is revealed. The dataset
used for the analysis does not allow me to identify the reason for the separation so
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this gap is filled entirely by the theoretical model. In addition, as a model predic-
tion, I find that high-quality foster matches are less likely to separate (relative to
low-quality foster matches), and both of the driving forces behind having a foster
match separated are aligned. That is, high-quality foster matches are less likely
to separate after the uncertainty is resolved, and also less likely to separate due to
the search for a better match.

Now, regarding adoption, I find that the decrease in the probability of being
adopted due to a disability (Fact 1) arises for two reasons. First, I show that chil-
dren with a disability (relative to children without a disability) are less likely to
form a foster match because foster parents require greater signals to be willing
to form a match with these children. Second, parents who are foster matched to
children with a disability (relative to parents foster matched to children without
a disability) have a greater incentive to remain in the reversible foster match and
not transit to adoption. The reason is that the adoption penalty for children with a
disability is greater (relative to children without a disability), and the probability
that they separate the match in the future to form a new match is smaller (relative
to children without a disability). Thus, parents adopting children with a disability
accept a greater adoption penalty in exchange to eliminate a smaller probability of
the match separating in the future. In this case, the intrinsic disadvantage (being
less preferred by foster parents) faced by children with a disability exacerbates in
the presence of the adoption penalty because it is not only more challenging for
these children to find a parent willing to foster them, but due to this fact, parents
fostering these children have less incentives to adopt because the threat of leav-
ing the match in the future is smaller. Further, I find that parents in high-quality
matches might have fewer incentives to adopt. The result is driven by the fact that
children in foster matches of high-quality have fewer incentives to separate the
foster match in the future. Hence, the adoption penalty not only exacerbates the
intrinsic disadvantage faced by children with a disability, but also creates incen-
tives for high-quality matches to not transit to adoption.

Related Literature. Most of the literature on dynamic matching with hetero-
geneous agents analyzes environments where matches do not reverse endoge-
nously. Under this assumption, the literature has addressed issues regarding sta-
bility (Doval, 2022; Altinok, 2021), matching algorithms and its implications on
welfare (Ünver, 2010; Anderson et al., 2015; Akbarpour et al., 2020; Baccara et al.,
2020; Leshno, 2022), and positive assortative matching (Burdett and Coles, 1997;
Eeckhout, 1999; Shimer and Smith, 2000; Chade, 2001, 2006; Smith, 2006). In these
papers, agents face the trade-off of whether to form a match today or wait for a bet-

5



ter partner. Now, if agents are allowed to form a match today and reverse it when a
better partner arrives, an additional feature arises. In the presence of reversibility,
agents must take into account that today’s partner and the potential better part-
ner of tomorrow might leave the match in the future. There is a small literature
analyzing dynamic matching environments with reversibility of matches, but the
focus is on stability and cooperative solution concepts (Damiano and Lam, 2005;
Kurino, 2009; Kadam and Kotowski, 2018; Liu, 2021). This paper is more related
to the literature on positive assortative matching by analyzing two-sided markets
with search frictions, heterogeneous agents, and irreversible matches. My contri-
bution adds to the literature on sorting along two dimensions. First, I allow for ir-
reversible and reversible matches. Second, instead of addressing positive sorting,
I estimate stylized facts present on the market and establish sufficient conditions
for these patterns to arise in equilibrium.

In addition, I contribute to the narrow set of papers analyzing foster care as
a matching market. Slaugh et al. (2015) studies the Pennsylvania Adoption Ex-
change program, a computational tool created to facilitate the adoption of chil-
dren in foster care and make several recommendations to improve the success
of adoptions. Olberg et al. (2021) constructs a dynamic search and matching
model to compare two different search processes use by the child welfare agen-
cies to identify potential adoption matches between parents and children. Lastly,
Robinson-Cortés (2021) presents an empirical framework to study how children
are assigned to foster homes using a confidential dataset, and uses the estimates
to study different policy interventions. This paper departs from the previous lit-
erature mainly by considering both types of matches in one model, adoption (ir-
reversible) and foster (reversible), allowing me to analyze a greater set of match
transitions experienced by children.

Organization of the Paper. The rest of the paper is organized as follows. Section
2 presents the empirical analysis and the facts that motivate the theoretical model.
Section 3 describes the theoretical environment, and introduces the equilibrium
definition. Section 4 presents the equilibrium analysis and the conditions under
which the equilibrium is consistent with the stylized facts, as well as the model
predictions regarding match quality. Lastly, Section 5 concludes. All proofs are in
the Appendix.
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2 Empirical Analysis

I motivate the key features of the two-sided dynamic matching model described in
the next section with an empirical analysis.8 Using data describing the universe of
children in the US foster care system over the period 2010 to 2016, I document new
stylized facts about the match process between foster children and foster parents.

2.1 Data and Descriptive Statistics

I use the 6-month Foster Care Files from AFCARS,9 an unbalanced panel of all
children in the US foster care system between the federal fiscal years of 2010 and
2016. The data track a child upon entry into foster care until she exits, which could
be due to reunification with birth-family, adoption, emancipation, guardianship,
transfer to another agency, runaway, or death. If a child exits foster care, both
the exit manner and date of exit are indicated. Additionally, the data include a
rich set of variables describing the child,10 such as gender, race and ethnicity, dis-
ability, whether the child is federally funded by Title IV-E,11 date of birth, date of
most recent entry into foster care, and date of termination of parental rights (if
applicable).12

In the data, the disability variable, which is the focus of my empirical analysis,
indicates whether a child has been clinically diagnosed with a disability, clinically
diagnosed without a disability, or not yet diagnosed. For example, a disability in-
cludes conditions such as blindness, glaucoma, arthritis, multiple sclerosis, down
syndrome, personality disorder, attention deficit, and anxiety disorder, among
others. Unfortunately, data do not allow us to identify a specific disability, nor
quantify either the number of disabilities or the severity. For the analysis, I say a
child has a disability if she has been clinically diagnosed with at least one dis-
ability, and a child has no disability otherwise. In the majority of the cases, once a
child enters the foster care system, a mandatory medical evaluation is performed;

8The empirical analysis does not seek to establish causality, but to obtain robust correlations
controlling for a rich set of covariates.

9AFCARS is a federally mandated data collection system. All fifty US states and the District of
Columbia are required to collect data on all children in foster care and all children adopted from
foster care.

10Following Buckles (2013) and Brehm (2017), for all demographics I use the most recent record
of each child since it updates all information.

11Title IV-E is a federal program through which states receive reimbursement of payments made
on behalf of eligible children.

12To protect the confidentiality of the child, the date of birth is set to the 15th of the month and
all dates are recoded to maintain consistent spans of time.
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thus I assume that disabilities are pre-existing conditions.13

For each period (semester in the data) that a child remains in foster care, the
data provide information about the last placement of the child during that pe-
riod, including the start date of the placement. These placements are classified as:
pre-adoptive home, non-relative foster home, relative foster home, group home,
institution, supervised independent living, and runaway. Using these variables, I
define a child as being foster matched in a given period if the child is placed in a
pre-adoptive home, a non-relative foster home, or a relative foster home.14 I de-
fine a child as being unmatched in a given period if the child is placed in a group
home or institution.

To maintain a consistent estimation sample, I restrict the sample to children
younger than age 16 whose parental rights have been terminated. The former
restriction excludes older children who often exit through legal emancipation, and
the latter is to ensure that children are eligible for adoption. I also restrict the
sample to children who are either foster matched or unmatched. This leaves a full
sample of 451, 967 children (sample A). Additionally, I create two subsamples.
The first subsample (sample B) keeps only those child-period observations where
the child is foster matched at the beginning of the period and still in foster care at
the end of the period. The second subsample (sample C) keeps only those child-
period observations where the child is unmatched at the beginning of the period
and still in foster care at the end of the period. Table 1 presents summary statistics
for the full sample and the two subsamples, and Table A1 presents these summary
statistics conditioned on, the variable of interest, child’s disability.

In Table 1 (sample A), children are, on average, almost 7 years old and have
had their parental rights terminated for 17 months. Out of all children, 41 percent
have been diagnosed with a disability. In a given period, 93 percent of children are
foster matched, with the average duration of that match being 16 months. I say a
child is adopted if she exits the system through adoption. On average, 28 percent
of children are adopted in each period. I say a child becomes unmatched if con-
ditional on being foster matched at the beginning of a period she is unmatched
at the end of the same period. Conditional on starting the period foster matched
(sample B), the probability that a child becomes unmatched is 2 percent. Now,
I say a child becomes foster matched if conditional on being unmatched at the

13This is a strong assumption since disabilities could vary with the amount of time spent in a
group home, or with the care provided by a foster parent. Ideally, we should consider disabili-
ties as a potentially time-variant characteristic; however, data do not allow me to observe how a
disability might evolve over time.

14It is important to mention that foster parents are not identifiable; when a child is placed in a
foster home only family structure, foster parents’ race and foster parents’ year of birth are reported.
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Table 1: Descriptive Statistics, All Samples

Sample A Sample B Sample C
obs = 1, 165, 818 obs = 659, 253 obs = 65, 970

Mean sd Mean sd Mean sd
Adopted 0.28 0.45 - - - -
Foster matched 0.93 0.25 1.00 0.00 0.00 0.00
Becomes foster matched - - - - 0.24 0.42
Becomes unmatched - - 0.02 0.14 - -
Foster match separates - - 0.19 0.39 - -
Age in years 6.80 4.43 6.81 4.36 12.17 2.80
Disabled 0.41 0.49 0.43 0.50 0.68 0.47
Male 0.53 0.50 0.52 0.50 0.63 0.48
White 0.43 0.50 0.42 0.49 0.44 0.50
Black 0.24 0.43 0.26 0.44 0.27 0.44
Hispanic 0.22 0.41 0.22 0.42 0.20 0.40
Title IV-E eligible 0.48 0.50 0.51 0.50 0.47 0.50
Months in foster care 34.87 24.38 34.86 24.86 53.10 36.72
Months since PRT? 17.09 22.62 16.23 22.15 41.99 36.86
ending in adoption 12.46 11.85 - - - -

Months in current placement 16.06 15.72 17.31 16.32 10.85 13.99
foster matched 16.44 15.78 - - - -

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). Means
and standard deviations are calculated for child-period observations. Sample A is the full sample
containing all children younger than age 16 whose parental rights have been terminated and who
are either foster matched or unmatched. Sample B and Sample C are subsamples of A. Sample
B (sample C) keeps only those child-period observations such that the child is foster matched
(unmatched) at the beginning of the period and still in foster care at the end of the period.
? PRT stands for Parental Rights Terminated.

beginning of a period she is foster matched at the end of the same period. The
probability that a child becomes foster matched is 24 percent (sample C). It is im-
portant to highlight that the rates at which children experience match transitions
are affected by the rates at which foster matches are separated. I say a child’s fos-
ter match separates if conditional on being foster matched at the beginning of a
period the child is no longer foster matched to the same parent at the end of the
period.15 Table 1 (sample B) shows that foster matches separate with probabil-

15Even though, foster parents are not identifiable, a variable recording the number of placements
allows me to identify whether the child is being fostered by the same parent.
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Table 2: Stylized Facts from Foster Care - Effect of Disability

Adoption Foster match Becomes Becomes
Separation Foster matched Unmatched

I II III IV

Disability γ -0.059*** 0.023*** -0.045*** 0.011***
(0.005) (0.002) (0.006) (0.001)

Mean of dependent 0.279 0.185 0.236 0.021
variable
Number of child-period 1,165,818 659,253 65,970 659,253
observations

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All
specifications control for child’s demographics, states indicators and period indicators. The first
and second columns consider sample A, third and fifth columns use sample B, and the fourth col-
umn uses sample C. Standard errors are cluster at the state-period level and shown in parentheses.
***P < 0.01; **P < 0.05; *P < 0.10.

ity 19 percent. In practice, a separation can arise for different reasons such as the
social worker decides to move the child to institutional care, the parent requests
the removal of the child, or the social worker finds a more suitable foster parent
for the child and decides to move the child. Unfortunately, the dataset does not
contain this information.

2.2 Empirical Specifications and Stylized Facts

I estimate the impact of disability on four outcomes: (1) the probability that a
child is adopted, (2) the probability that a foster match separates, (3) the prob-
ability that a child becomes foster matched, and (4) the probability that a child
becomes unmatched. For each outcome, I estimate the following linear probabil-
ity model:

yijt = α + γ disabilityi + βXi + θZit + ξj + λt + εijt (1)

where yijt is an indicator for the outcome of child i in state j at period t. disabilityi
is an indicator equal to one if child i has a disability and zero otherwise. Xi is
a vector of time-invariant characteristics of child i such as gender, race, ethnicity,
and whether the child is federally funded through Title IV-E.Zit is a vector of time-
varying characteristics of child i including age in months, number of months in
foster care, and number of months since parental rights have been terminated. I
include a vector of period fixed-effects λt to control for time-trends, and a vector
of state fixed-effects ξj to control for unobserved state characteristics.
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2.2.1 Fact 1: Disability Decreases the Probability of Being Adopted

The adoption rates of children with and without a disability are 0.22 and 0.32, re-
spectively (see Table A1). To evaluate the significance of this effect conditional on
other demographics, I use sample A to estimate Equation 1 where the dependent
variable yijt is equal to one if child i in state j is adopted in period t and zero if she
either remains in foster care or exits through any other manner. Table 2 column I
shows that children with a disability are 6 percent less likely to be adopted than
children without a disability.

As many states require parents to foster a child before an adoption can take
place, the fact that children with a disability are less likely to be adopted might be
driven by the fact that these children are less likely to be fostered in the first place.
To analyze this, I estimate a version of Equation 1where the dependent variable yijt
is redefined to take the value of one if child i in state j is foster matched in period
t and zero otherwise. As in adoption, the coefficient on disability is negative (see
Table A2). While this is suggestive, the theoretical model will allow me to show
that children with a disability are less likely to be adopted not only because they
are less likely to be foster matched, but they are also less likely to transit from a
foster match to adoption.

2.2.2 Fact 2: Disability Increases the Probability of Foster Match Separation

From the data, foster matches constituted by children with and without a disabil-
ity separate at rates 0.19 and 0.18, respectively (see Table A1). Using sample B,
I estimate Equation 1 where the dependent variable yijt is equal to one if child i

in state j has her foster match separated in period t and zero otherwise. Here,
the vector Zit includes the number of months that the child has been in her cur-
rent foster match and what type of foster match it is (i.e., whether a pre-adoptive
home, non-relative foster home or relative foster home).

Table 2 column II shows that children with a disability are 2 percent more
likely to have their foster match separated than children without a disability. Even
though, the dataset does not allow to identify the reason of the separation, the
theoretical model will separately identify two types of separations: (1) the child
transits from foster matched to unmatched i.e. from foster home to institutional
care, and (2) the child transits from a foster match to another foster match i.e. from
foster home to foster home. Furthermore, I will show that these two forces work
on opposition directions: children with a disability are more likely to experience
the first type of separation, and less likely to experience the second type.
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2.2.3 Fact 3: Disability Decreases the Probability of Becoming Foster Matched

The rates of foster match formation (conditional on starting the period unmatched)
of children with and without a disability are 0.22 and 0.28, respectively (see Ta-
ble A1). To study the effect of disability on the probability of becoming foster
matched, I use sample C to estimate Equation 1 where the dependent variable yijt
equal one indicates that child i in state j becomes foster matched in period t and
zero otherwise. In this specification, the vector Zit additionally includes the num-
ber of months that the child has been in her current unmatched state and where
she is currently living (i.e., whether a group home or institution).

Table 2 column III shows that disability decreases the probability of becoming
foster matched by 5 percent. That is, children with a disability are less likely to
become foster matched than children without a disability. The theoretical model
will show that this probability is driven by the fact that disability decreases the
probability that a child finds a parent willing to foster her, and if they do, disability
increases the probability that the foster match is later on destroyed.

2.2.4 Fact 4: Disability Increases the Probability of Becoming Unmatched

From the data, the rates of unmatched formation (conditional on starting the pe-
riod foster matched) of children with and without a disability are 0.03 and 0.01,
respectively (see Table A1). Here, I use sample B to estimate Equation 1 where the
dependent variable yijt equal one indicates child i in state j becomes unmatched in
period t and zero otherwise. As in the previous estimation, Zit includes the num-
ber of months that the child has been in her current foster match and the type of
foster match.

As we can see from Table 2 column IV, disability increases the probability of
becoming unmatched. In the model, the probability of becoming unmatched will
depend on the rate at which foster matches separate and the probability that a
child finds a parent willing to foster her. Thus, behind this stylized fact, there are
driving forces working on opposite directions, as in the case of separations.

3 Model

In this section, I develop a search and matching model to analyze how different
incentives interact in the agents’ decisions over match formation and separation.
With the data available is not possible to make any statement regarding what type
of matches, in terms of match quality, are more likely to form, separate, or transit
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to adoption. Thus, the theoretical model will be used not only to have a better
understanding of the empirical facts estimated in Section 2 but it will also allow
us to establish how the match transition of children is affected by match-quality
which is not observable to the econometrician.

3.1 Environment

Time is discrete with an infinite-horizon. One side of the market is populated by
children who differ in an observable attribute x ∈ X = {x1, x2}where x1 denotes
a child with a disability, x2 indicates a child without a disability, and x1 < x2.
Each period, a strictly positive mass of children ρ enters the market and each child
draws an attribute from a full support probability distribution l(x). The other side
of the market is constituted by homogeneous parents. The mass of parents out of
the market is strictly positive, and parents make entry and exit decisions each
period.

Children and parents who are in the market can be unmatched or matched.
Let upt ≥ 0 denote the endogenous distribution of unmatched parents in the mar-
ket, and uct(x) denote the endogenous distribution of unmatched children in the
market. Matches are one-to-one, formed between children and parents, and het-
erogeneous in quality denoted as q ∈ Q = {q1, q2} where q1 < q2.16 Further, I
define two types of matches: foster matches (reversible) and adoption matches
(irreversible). Agents who form a foster match (hereafter f-match) remain in the
market, while agents who form an adoption match (hereafter a-match) leave the
market. Letm(x, q) denote the endogenous distribution over f-matches. Thus, the
aggregate state of the market is summarized by φ = (up, uc,m).

All agents are risk-neutral and discount future at rate β ∈ (0, 1). Payoffs for
unmatched children are normalized to zero. For children who are f-matched or a-
matched, payoffs are given by the real-valued function bc(x, q, z) where z ∈ {f, a},
z = f indicates an f-match, z = a indicates an a-match, and a > f . I assume that
children’ payoff function satisfies the following:

Assumption 1 (Payoffs of Children). (a) bc(x, q, a) > bc(x, q, f) ≥ 0 for all (x, q);

(b) bc(x, q, z) is decreasing in x;

(c) bc(x, q, z) is increasing in q;
16Match quality captures other factors affecting the match independent of the child’s attribute,

such as the emotional bond between the child and parent, or the relationship between the parent
and the child’s birth family.
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(d) bc(x, q2, f) > bc(x, q1, a);

(e) bc(x, q, z) is supermodular in (x, z);

(f) bc(x, q, z) is submodular in (x, q); and

(g) bc(x1, q2, f)− bc(x1, q1, a) > bc(x2, q2, f)− bc(x2, q1, a).

Assumption 1(a) captures that children are better-off with a foster parent than
in institutional care, and better-off when adopted than fostered. 1(b) reflects that
children with a disability benefit more from the family environment and emo-
tional stability provided by foster and adoption. The intuition that children are
better-off in high-quality matches is addressed in 1(c). Assumption 1(d) states
that children prefer to be f-matched when the quality is high than a-matched when
the quality is low. 1(e) imposes that the gain of being adopted is greater for chil-
dren without a disability, and 1(f) captures that the gain of being in high-quality
matches is greater for children with a disability. Lastly, assumption 1(g) implies
that the gain of being in an f-match of high-quality versus being in an a-match of
low-quality is greater for children with a disability.

Payoffs for parents out of the market are normalized to zero. Parents incur
on a per-period cost k > 0 to hold a license and stay in the market. Parents who
are f-matched or a-matched receive payoffs according to the real-valued function
bp(x, q, z). I assume that parents’ payoff function satisfies the following:

Assumption 2 (Payoffs of Parents). (a) bp(x, q, f) > bp(x, q, a) for all (x, q);

(b) bp(x, q, z) is increasing in x;

(c) bp(x, q, z) is increasing in q;

(d) bp(x, q, z) is log-supermodular in (x, z); and

(e) bp(x, q, z) is log-submodular in (q, z).

Assumption 2(a) reflects the presence of the adoption penalty. 2(b) captures
the intuition that parents prefer children without a disability to children with a
disability. 2(c) reflects that parents in high-quality matches benefit more from
fostering/adopting than parents in low-quality matches. Now, the term 1− bp(x,q,a)

bp(x,q,f)

represents the adoption penalty. Assumption 2(d) states that the adoption penalty
is greater for children with a disability. Lastly, assumption 2(e) imposes that the
adoption penalty is increasing in the match quality.
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Figure 1: Timeline

Figure 1 exhibits the timeline within a period. Each period is divided into four
stages:

1. Search and f-matching stage. Children search when unmatched or f-matched,
and parents search only when unmatched. Meetings are stochastic and can be
described in terms of the market tightness θ ∈ R+ (i.e. parents-to-children ratio):

θ =
up∑

x u
c(x) +

∑
qm(x, q)

.

A child meets a parent with probability πc(θ) which is a strictly increasing and
strictly concave function such that πc(0) = 0. Similarly, a parent meets a child
with probability πp(θ) which is a strictly decreasing and convex function such that
πp(θ) = πc(θ)

θ
and πp(0) = 1. Next, when a child and parent meet, a match quality

q is drawn from the full support probability distribution h(q). A match quality
is constant through the duration of the f-match, and learned through experience.
Before forming an f-match, agents observe a noisy signal s ∈ S = {s1, s2} generat-
ing a full support conditional probability distribution g(q|s) such that if s′ > s then
G(q|s′) ≤ G(q|s). After observing the noisy signal, agents announce simultane-
ously ‘foster’ or ‘reject’. An f-match is formed if and only if both agents announce
foster. If a new f-match is formed, any old f-match dissolves.

2. Payoff realization stage. Agents in newly formed f-matches perfectly observe
the quality q. Once a match quality is complete information, payoffs received dur-
ing the remaining duration of the f-match are known.

3. Destruction and a-matching stage. A child x is adopted by a relative with ex-
ogenous probability δx ∈ (0, 1) where δx2 ≥ δx1 .17 The f-match separates, if a child
is adopted exogenously. Now, if the f-match remains, then child and parent an-
nounce simultaneously ‘adoption’, ‘destroy’, or ‘remain’. An f-match destroys if at
least one agent announces destroy, and an a-match takes place if and only if both
agents announce adoption. If an f-match destroys, the parent remains unmatched
that period and the child searches. Agents who form an a-match receive adoption

17In some cases, relatives reach out when they learn about the situation and request to adopt
the child. Child welfare agencies have strong preferences for relatives.
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payoffs to perpetuity, and I assume that q remains constant when transitioning
from f-matched to a-matched. Children adopted by a relative receive bc(x, q2, a) to
perpetuity.

4. Entry and exit stage. A mass of new children enters the market and parents
make entry/exit decisions. Parents and children who enter the market remain un-
matched that period. Agents who formed an a-match during the previous stage
leave the market, and only unmatched parents can decide to exit the market.

I restrict attention to stationary pure symmetric Markov strategies. Strategies
depend on the aggregate state of the market φ, and to simplify notation I sup-
press it. I refer to a parent f-matched to child x with match quality q as parent
(x,q). For each parent, a strategy consists of the tuple (in, out, f p, dp, ap) where
in ∈ {no, yes} is the entry strategy, out ∈ {no, yes} is the exit strategy, fp(x, s) :

X × S → {reject, foster} is the decision to form an f-match with child x after ob-
serving signal s, dp : X×Q→ {0, 1} is the decision to destroy the f-match such that
dp(x, q) = 1 when parent (x, q) announces destroy, and ap : X ×Q→ {0, 1} is the
decision to form an a-match such that ap(x, q) = 1 when parent (x, q) announces
adoption. Now, refer to child x f-matched with quality q as child (x,q), and refer
to an unmatched child x as child (x,q0). To make reference to a child’s match
status, I define an auxiliary set Q̄ = Q ∪ {q0}. For each child x, a strategy consists
of the triple (f c, dc, ac) where f c : X × Q̄× S → {reject, foster} is the decision to
form a new f-match after child (x, q̄) observes signal s, and dc : X × Q → {0, 1}
and ac : X ×Q→ {0, 1} are the destruction and adoption decisions, respectively.

Lastly, let d(x, q) = dc(x, q) + (1− dc(x, q))dp(x, q) and a(x, q) = ac(x, q)ap(x, q)

denote the joint destruction and adoption decisions of an f-match (x, q), and define
the f-matching correspondence as follows:

Definition 1. A foster-matching correspondence is a mapM : X×Q̄ 7→ S such that
s ∈ M(x, q̄) if and only if (i) child (x, q̄) is willing to form an f-match after observing
signal s, and (ii) unmatched parent is willing to form an f-match after meeting child x
and observing signal s.

3.2 Value Functions

3.2.1 Value Functions for Children

Let C(x, q̄) denote the value function for child (x, q̄) at the end of a period, and
define Ĉ(x, q̄) as the search value for child (x, q̄) at the beginning of the search
and f-matching stage. The search value function is specified by Equation 2. At
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the beginning of the search and f-matching stage, child (x, q̄) meets a parent with
endogenous probability πc(θ). If no meeting takes place, status-quo is preserved
and she receives the continuation value C(x, q̄). If a meeting takes place, a noisy
signal s is realized where f(s) is the probability distribution over signals derived
from h(q) and g(q|s). If at least one agent announces reject after observing s, then
the status-quo is preserved. If both agents announce foster after observing s, then
the child receives the conditional expected value Es[C(x, q)] =

∑
q C(x, q)g(q|s).

Ĉ(x, q̄) =
(

1− πc(θ)
∑
M(x,q̄)

f(s)
)
C(x, q̄) + πc(θ)

∑
M(x,q̄)

Es[C(x, q)]f(s) (2)

Thus, child (x, q̄) announces foster after observing s if and only if the condi-
tional expected value of forming a new f-match is greater than the continuation
value of the status-quo i.e. Es[C(x, q)] ≥ C(x, q̄). For child x who is unmatched at
the end of a period, the value function is:

C(x, q0) = βδx
bc(x, q2, a)

1− β
+ β(1− δx)Ĉ(x, q0) (3)

Now, consider a child x f-matched with quality q at the end of a period. Child
(x, q)’s value function is specified by Equation 4. In the current period, she re-
ceives the f-match payoff bc(x, q, f). At the beginning of the next period, she is
adopted by a relative with probability δx. If the f-match remains, child and parent
decide between transit to an a-match, destroy the f-match, or remain f-matched.
In each case, child (x, q)’s possible continuation values are bc(x,q,a)

1−β , Ĉ(x, q0), and
Ĉ(x, q) respectively.

C(x, q) = bc(x, q, f) + βδx
bc(x, q2, a)

1− β
+ β(1− δx)

[
dp(x, q)Ĉ(x, q0)

+ ap(x, q) max
{bc(x, q, a)

1− β
, Ĉ(x, q0) , Ĉ(x, q)

}
+
(

1− dp(x, q)− ap(x, q)
)

max
{
Ĉ(x, q0) , Ĉ(x, q)

}]
(4)

Thus, child (x, q) chooses adoption if and only if the value of being adopted
is greater than the value of continue searching while unmatched and the value of
continue searching while f-matched when the quality is q. Hence, a child faces the
following trade-off: receive a greater adoption payoff but forgo the opportunity
of finding a ‘better’ match. Similarly, child (x, q) chooses destroy if and only if the
value of searching while unmatched is greater than the value of being adopted and
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the value of continue searching while f-matched. Hence, when a child decides to
destroy a f-match, she is destroying a ‘bad’ match.

3.2.2 Value Functions for Parents

Let Pu denote the value function for an unmatched parent and P(x, q) denote the
value function for parent (x, q). For an unmatched parent, the value function is
presented in Equation 5. In the current period, the unmatched parent incurs in
the per-period cost k of holding a license. Next, the parent decides between stay
or exit the market. If she exits her payoff is zero, and if she stays she meets a
child with probability πp(θ). When no meeting takes place, the parent remains
unmatched. When a meeting takes place, a child is drawn from the endogenous
probability distribution m̂(x, q̄) derived from uc and m (for detail see Appendix
B.1). After meeting child (x, q̄), agents observe some signal. If at least one agent
announces reject, then the parent remains unmatched. If both announce foster,
then the parent receives Es[P(x, q)].

Pu = max

{
0,
−k + βπp(θ)

∑
M(x,q̄)

∑
x,q̄ Es[P(x, q)]m̂(x, q̄)f(s)

1− β
(

1− πp(θ)
∑
M(x,q̄)

∑
x,q̄ m̂(x, q̄)f(s)

) }
(5)

Thus, an unmatched parent forms an f-match with child (x, q̄) after observing
signal s if and only if Es[P(x, q)] ≥ Pu.

For parent (x, q), the value function is Equation 6. In this period, she receives
bp(x, q, f). Next period, she becomes unmatched with probability δx. If the f-
match remains, child and parent decide between transit to adoption, destroy the
f-matched or remain f-matched.

P(x, q) = bp(x, q, f) + βδxPu + β(1− δx)
[
dc(x, q)Pu

+ ac(x, q)max
{bp(x, q, a)

1− β
, Pu ,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
P(x, q) + πc(θ)

∑
M(x,q)

f(s)Pu
}

+
(
1−dc(x, q)−ac(x, q)

)
max

{
Pu ,

(
1−πc(θ)

∑
M(x,q)

f(s)
)
P(x, q)+πc(θ)

∑
M(x,q)

f(s)Pu
}]

(6)

Hence, when parent (x, q) is deciding to adopt, she faces the following trade-
off: forgo part of the per-period payoff in exchange to eliminate the likelihood that
the f-match is destroyed in the future.
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3.3 Aggregate State of the Market

The distribution of unmatched parents in the market depends on the entry and
exit strategies of parents. Thus, the stationary mass of unmatched parents up sat-
isfies the following inequality:

πp
(

up∑
x u

c(x) +
∑

qm(x, q)

)
≤ k

β
∑
M(x,q̄)

∑
Es[P(x, q)]m̂(x, q̄)f(s)

(7)

with equality if up is strictly positive. For distributions uc(x) andm(x, q) to be time
invariant, the mass destruction and mass creation must exactly balance (for detail
see Appendix B.2).

3.4 Definition of Equilibrium

See Appendix C.

4 Theoretical Analysis

I first derive equilibrium properties and identify the driving forces behind the
empirical results estimated in Section 2. Afterwards, I use these properties to en-
sure that the empirical facts arise in equilibrium and carry out model predictions
regarding match quality.

4.1 Equilibrium Analysis

The analysis focuses on foster care equilibria with a positive mass of parents in the
market i.e up > 0 which implies that Pu = 0 (from Equations 5 and 7). Moreover,
I assume that for each child, there is at least one signal such that parents receive a
positive expected foster payoff.

Assumption 3. For each x, there exists ŝ such that Eŝ[bp(x, q, f)] ≥ 0.

Proposition 1 presents how the destruction strategy of f-matches varies with
disability status and match quality. Item (i) establishes that, after the uncertainty
over the quality of the match is resolved, f-matches involving children with a dis-
ability destroy more than f-matches involving children without a disability. For-
mally, fixing q, if the f-match (x2, q) is destroyed then the f-match (x1, q) is also
destroyed. Recall that, an f-match can be destroyed by either the child or the par-
ent, d(x, q) = dc(x, q) + (1 − dc(x, q)) dp(x, q). By Assumption 1(a), it follows that
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children never destroy an f-match. Thus, in equilibrium, the destruction is driven
by parents, which is consistent with the anecdotal evidence suggesting that when
a child moves from foster home to institutional care is generally due to the request
of the foster parent. Now, by Assumption 2(b), it follows that if dp(x2, q) = 1 then
dp(x1, q) = 1 for all q. In item (ii), I show that, if the f-match (x, q1) is destroyed
then f-match (x, q2) is also destroyed. In words, if a parent f-matched to child x

when the quality is q2 is not willing to continue providing care, then a parent f-
matched to child xwhen the quality is q1 is also not willing to continue providing
care. This follows from Assumption 2(c).

Proposition 1 (Destruction). Assume children’ payoffs satisfy Assumption 1(a), and
parents’ payoffs satisfy Assumptions 2(a)-(c). Then, in any foster care equilibrium:

(i) f-match destruction is greater for children with a disability,

d(x1, q) ≥ d(x2, q), for all q.

(ii) f-match destruction is greater for low-quality matches,

d(x, q1) ≥ d(x, q2), for all x.

Proof. See Appendix D.1.

To establish the empirical facts, I will ensure that a parent’s strategies satisfy
the following:

(1) if a parent is willing to form an f-match with child x1 after observing signal
s, then she is also willing to form an f-match with child x2 after observing s.

(2) if a parent is willing to adopt child x1 when the quality is q, then she is also
willing to adopt child x2 when the quality is q.

Since (1) might contradict (2), I impose Assumption 4 which allows me to
characterize a parent’s f-match formation strategies using the per-period payoffs.
This assumption ensures that, if the conditional expected payoff received by a par-
ent f-matched to child (x, q) is negative, then the conditional expected value of
being f-matched to child (x, q) is also negative.

Assumption 4. For each (s, x), if Es[bp(x, q, f)] < 0 then the following condition on
primitives holds:

Es
[
bp(x, q, f) + β (1− δx)

∑
q

max

{
bp(x, q, a)

1− β
, 0 , bp(x, q, f)

1− β (1− δx)

}
g(q|s)

]
< 0
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Proposition 2 exhibits how the formation of f-matches involving unmatched
children varies with disability status and match quality. Recall that f-matches
must be mutually agreed upon, that is, s ∈ M(x, q0) if and only if s ∈ F p(x)

and s ∈ F c(x, q0). By Assumption 1(a), it follows that children always announce
foster after observing signal s. Intuitively, as the law requires, children are placed
in foster family homes whenever possible. Thus, the formation of an f-match de-
pends on the parent’s decision. In item (i), I show that conditional on observing
signal s, if a parent is willing to foster a child with a disability, then she must also
be willing to foster a child without a disability i.e. if s ∈ F p(x1) then s ∈ F p(x2).
This follows from Assumption 2(b). In words, children with a disability are less
likely to find a parent willing to foster them. In item (i), I state that if a parent
announces foster after meeting child x and observing signal s1, then she also an-
nounces foster after observing signal s2. The result follows from Assumption 2(c).
Since G(q|s1) first-order stochastically dominates G(q|s2), it follows that the con-
ditional expected value received by a parent when fostering a child is increasing
in the signal.

Proposition 2 (F-match formation involving unmatched children). Assume chil-
dren’ payoffs satisfy Assumption 1(a), and parents’ payoffs satisfy Assumptions 2(b)-(c),
3 and 4. Then, in any foster care equilibrium:

(i) f-match formation is smaller for unmatched children with a disability,

M(x1, q0) ⊆M(x2, q0).

Moreover,M(x, q0) is non-empty for all x.

(ii) f-match formation is greater for high-signals,

s1 ∈M(x, q0) implies s2 ∈M(x, q0), for all x.

Proof. See Appendix D.2.

Proposition 3 exhibits how f-match formation involving f-matched children
varies with disability status and match quality. Item (i) states that children with-
out a disability are more likely to form a new f-match than children with a dis-
ability. The result is driven by the parents’ decision: children without a disability
are more demanded by foster parents. Item (ii) shows that low-quality matches
are more likey to form new f-matches than high-quality matches. The result is
driven by the children’ decision. By Assumption 1(d), children value more qual-
ity than the adoption status, thus they have no incentives to separate high-quality
matches.
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Proposition 3 (F-match formation involving f-matched children). Assume chil-
dren’ payoffs satisfy Assumptions 1(a),(c)-(d), and parents’ payoffs satisfy Assumptions
2(a)-(c), 3 and 4. Then, in any foster care equilibrium:

(i) f-match formation is smaller for children with a disability,

∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s), for all q.

(ii) f-match formation is greater when the old match is low-quality,

∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0, for all x.

Proof. See Appendix D.3.

Due to Proposition 3(i), children with a disability are more willing to an-
nounce adoption after observing a low-quality match because their search oppor-
tunities are smaller. However, the intuition suggests that social workers might be
pickier when searching for an adoptive parent for a child with a disability since
these children benefit more from higher quality matches. Thus, to ensure that
this intuition arises in equilibrium, I impose stronger conditions in Assumption
5. These conditions will help to ensure that if a child with a disability is willing
to give up the opportunity of continue searching for a high-quality match, then
children without a disability will also be willing to give up this opportunity.

Assumption 5. Children’ payoffs satisfy the following:

(a) δx1
δx2

> bc(x2,q2,a)−bc(x2,q1,a)
bc(x1,q2,a)−bc(x1,q1,a)

(b) {bc(x1,q2,f)−bc(x1,q1,a)}(1−β(1−δx1 ))−{bc(x1,q2,a)−bc(x1,q2,f)}β(1−δx1 )

1−β(1−δx1 )
>

bc(x2, q2, f)− bc(x2, q1, a)

(c) {bc(x1,q2,f)−bc(x1,q1,a)}βδx1−{b
c(x1,q2,a)−bc(x1,q2,f)}(1−β)

g(q2|s1)
>

bc(x2, q2, f)(1− β) +bc(x2, q2, a)β −bc(x2, q1, a)

Proposition 4 exhibits how adoption outcomes vary with disability status and
match quality. Item (i) states that children with a disability transit to adoption less
than children without a disability. Both parents’ and children’s decisions drive the
result. Item (ii) shows that if the probability that the child leaves the f-match is
sufficiently low, then high-quality matches do not transit to adoption due to the
parents’ decision. Thus, high-quality matches transit to adoption less than low-
quality matches.

22



Proposition 4 (Adoption). Assume children’ payoffs satisfy Assumptions 1(a)-(g)
and 5(a)-(c), and parents’ payoffs satisfy Assumptions 2(a)-(e), 3 and 4. Then, in any
foster care equilibrium:

(i) a-match formation is smaller for children with a disability,

a(x2, q) ≥ a(x1, q), for all q.

(ii) a-match formation is greater for low-quality matches,

a(x, q1) ≥ a(x, q2), for all x.

Proof. See Appendix D.4.

4.2 Empirical Facts and Model Predictions

Now, I establish sufficient conditions on primitives such that the empirical results
estimated in Section 2 emerge in equilibrium, and analyze the role of match qual-
ity in the empirical facts. From now on, I assume all the assumptions specified
previously hold.

4.2.1 Probability of Being Adopted

Consider child (x, q̄) at the beginning of a period, and let A(x, q̄) denote the prob-
ability that she becomes a-matched next period specified as:

A(x, q0) = δx + (1− δx) πc(θ)
∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
[
δx +

(
1− δx

)
a(x, q′)

]
and

A(x, q) = δx

+ (1− δx)
{
a(x, q) + d(x, q) πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
[
δx +

(
1− δx

)
a(x, q′)

]
+
(

1− a(x, q)− d(x, q)
)
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s)
[
δx +

(
1− δx

)
a(x, q′)

]}

In the first case, the probability that a child (x, q0) is adopted endogenously
depends on the child forming an f-match during the search and f-matching stage,
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and both agents announcing adoption after observing some quality q. In the sec-
ond case, the probability that child (x, q) is adopted endogenously can be decom-
posed in three events: (a) f-match (x, q) transits to adoption, (b) f-match (x, q)

destroys and the unmatched child transits to an a-match with another parent, and
(c) the f-match (x, q) remains but the child finds a new f-match and transits to an
a-match with another parent.

Corollary 1. In any foster care equilibrium, the probability of being adopted is:

(i) smaller for children with a disability if δx2−δx1
1−δx1

> π holds.

(ii) greater for low-quality matches if bp(x, q1, a) > 0 and bp(x,q2,a)
bp(x,q2,f)

≤ 1−β
1−β(1−δx)

hold.

Proof. See Appendix E.1.

Corollary 1(i) exhibits sufficient conditions for Fact 1 to arise in equilibrium. I
say that children with a disability are less likely to be adopted ifA(x2, q̄) ≥ A(x1, q̄)

holds for all q̄. Loosely speaking, children with a disability are less likely to form
an f-matched, and if they do, they are less likely to transit to adoption.

Corollary 1(ii) presents the impact of match quality on the probability of being
adopted. I say that the probability of being adopted is decreasing in match qual-
ity if A(x, q1) ≥ A(x, q2) holds for all x. In the presence of the adoption penalty,
when the exhibited conditions are satisfied, high-quality matches are less likely
to transit to an a-match than low-quality matches. Intuitively, if the separation of
high-quality matches is low enough, then parents have no incentives to choose
adoption.

4.2.2 Probability of Foster Match Separation

Consider child (x, q) at the beginning of a period, and letD(x, q) denote the prob-
ability that the f-match separates within a period:

D(x, q) = (1− δx)(1− a(x, q))

[
d(x, q) +

(
1− d(x, q)

)
πc(θ)

∑
M(x,q)

f(s)

]

The probability that an f-match (x, q) separates is decomposed in two events.
First, f-match (x, q) destroys during the destruction and a-matching stage. Second,
f-match (x, q) remains but, during the search and f-matching stage, child x forms
a new f-match with some parent after observing signal s.

Corollary 2. In any foster care equilibrium, the probability of foster match separation is:
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(i) greater for children with a disability if δx2−δx1
1−δx1

≥ f(s1) holds.

(ii) greater for low-quality matches if a(x, q1) = 0 and a(x, q2) = 0 hold.

Proof. See Appendix E.2.

Corollary 2(i) exhibits sufficient conditions for Fact 2 to arise in equilibrium. I
say that children with a disability are more likely to have a foster match separation
ifD(x2, q) ≥ D(x1, q) holds for all q. This depends on two forces working on oppo-
site directions, and the empirical result sheds light on which of the driving forces
prevails in equilibrium. On the one hand, Proposition 1(i) shows that children
with a disability are more likely to have an f-matched destroyed, which by itself
makes them more likely to separate On the other hand, Proposition 3(i) shows
that children with a disability are less likely to form a new f-match, which by it-
self makes them less likely to separate. Hence, foster separation involving children
with a disability are mainly driven by the uncertainty on the quality of the match,
while foster separations affecting children without a disability are driven mostly
by the search to improve the match quality.

Corollary 2(ii) presents sufficient conditions such that the probability of foster
match separation is decreasing in match quality, D(x, q1) ≥ D(x, q2) for all x. In
this case, the driving forces behind separation are aligned. Specifically, as long as
agents’ payoffs are increasing in quality (along with other conditions), the prob-
ability of separation is decreasing in match quality.

4.2.3 Probability of Becoming Foster Matched

Consider child (x, q0) at the beginning of a period, then the probability that child
x becomes f-matched next period is denoted as M(x):

M(x) = (1− δx)
[
πc(θ)

∑
M(x,q0)

f(s)
∑
q

g(q|s) (1− δx)
(
1− d(x, q)

)]

Corollary 3 describes the sufficient conditions for Fact 3 to arise in equilibrium.
I say that children with a disability are less likely to become foster matched if
M(x2) ≥ M(x1) holds. In this case, children with a disability are less likely to
form an f-match, and if they form an f-match, children with a disability are more
likely to have it destroyed.

Corollary 3. In any foster care equilibrium, the probability of becoming foster matched is
smaller for children with a disability.

Proof. See Appendix E.3.
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4.2.4 Probability of Becoming Unmatched

Consider child (x, q) at the beginning of a period, and let U(x, q) denote the prob-
ability that she becomes unmatched:

U(x, q) = (1− δx)
(
1− a(x, q)

){
d(x, q)

[
1− πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
(
1− d(x, q′)

)]
︸ ︷︷ ︸

1−M(x)

+
(
1− d(x, q)

)
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s)d(x, q′)
}

Here, child (x, q) becomes unmatched if f-match (x, q) is destroyed and she
remains unmatched after the search and f-matching stage, or if the child in the
f-match (x, q) forms a new f-match which is later on destroyed.

Corollary 4. In any foster care equilibrium, the probability of becoming unmatched is:

(i) greater for children with a disability if δx2−δx1
1−δx1

≥ f(s1) and 1−δx1
2−δx1−δx2

> π hold.

(ii) greater for low-quality matches if a(x, q1) = 0 and a(x, q2) = 0 hold.

Proof. See Appendix E.4.

Corollary 4(i) exhibits sufficient conditions for Fact 4 to arise in equilibrium. I
say that disability increases the probability of becoming unmatched if U(x1, q) ≥
U(x2, q) for all q. There are potentially two driving forces working on opposite
directions in this case. On the one hand, by Proposition 1(i) and Corollary 3,
children with a disability are more likely to destroy an f-match and more likely
to remain unmatched, which makes them more likely to become unmatched. On
the other hand, by Propositions 1(i) and 3(i), children with a disability are less
likely to form a new f-match but are more likely to destroy the new f-match later
on, thus is not clear who is more likely to become unmatched.

Corollary 4(ii) shows that the probability of becoming unmatched is decreas-
ing in match quality, U(x, q1) ≥ U(x, q2) for all x. In this case, the driving forces
behind becoming unmatched are aligned.

5 Concluding Remarks

This paper provides an extensive analysis of the match transitions of children re-
linquished for adoption in the US foster care system. I first present an empirical
analysis that yields four new facts. Thereafter, I develop a two-sided search and
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matching model used to rationalize the empirical facts and carry out predictions
regarding match quality.

Using the theoretical model, I show that foster match separation involving chil-
dren with a disability is mainly driven by the uncertainty of the quality of the
match, while foster separation involving children without a disability is driven to
improve match quality. Also, I find that high-quality matches are less likely to
be separated. Surprisingly, I find that foster match separation plays a crucial role
in adoption by influencing the incentives of foster parents to adopt. Due to the
presence of the financial penalty on adoption, parents face the following trade-off
when deciding to adopt: accept the penalty in exchange for eliminating the like-
lihood that the child breaks the foster match in the future. For adoption, I show
that the adoption penalty not only exacerbates the intrinsic disadvantage faced
by children with a disability but also creates incentives for high-quality matches
to not transit to adoption. Moreover, I show that foster parents in high-quality
matches might have fewer incentives to adopt.
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A Appendix: Tables

Table A1: Descriptive Statistics by Disability Status

Sample A Sample B Sample C
obs = 1, 165, 818 obs = 659, 253 obs = 65, 970

Disability Yes No Yes No Yes No
Adopted 0.22 0.32 - - - -

(0.41) (0.47)
Foster matched 0.89 0.96 1.00 1.00 0.00 0.00

(0.31) (0.19) (0.00) (0.00) (0.00) (0.00)
Becomes foster matched - - - - 0.22 0.28

(0.41) (0.45)
Becomes unmatched - - 0.03 0.01 - -

(0.18) (0.11)
Foster match separates - - 0.19 0.18 - -

(0.40) (0.38)
Age in years 7.96 6.01 7.79 6.07 12.34 11.81

(4.45) (4.23) (4.35) (4.22) (2.56) (3.22)
Male 0.57 0.50 0.60 0.50 0.65 0.58

(0.50) (0.50) (0.50) (0.50) (0.48) (0.49)
White 0.43 0.44 0.41 0.42 0.45 0.42

(0.49) (0.50) (0.49) (0.50) (0.50) (0.49)
Black 0.25 0.23 0.27 0.24 0.26 0.29

(0.43) (0.42) (0.44) (0.43) (0.44) (0.45)
Hispanic 0.22 0.22 0.22 0.23 0.19 0.21

(0.41) (0.41) (0.41) (0.42) (0.39) (0.41)
Title IV-E eligible 0.49 0.47 0.53 0.50 0.45 0.50

(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Months in foster care 41.20 30.53 40.91 30.23 55.94 46.99

(28.66) (19.80) (28.62) (20.37) (37.34) (34.54)
Months since PRT? 21.71 13.91 20.09 13.29 44.14 37.34

(26.53) (18.83) (25.27) (18.92) (37.02) (36.09)
Months in current 16.67 15.64 18.18 16.64 11.03 10.47
placement (17.32) (14.51) (18.16) (14.72) (14.67) (12.38)

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). Means
and standard deviations are calculated for child-period observations. Sample A is the full sample
containing all children younger than age 16 whose parental rights have been terminated and who
are either foster matched or unmatched. Sample B and Sample C are subsamples of A. Sample
B (sample C) keeps only those child-period observations such that the child is foster matched
(unmatched) at the beginning of the period and still in foster care at the end of the period.
? PRT stands for Parental Rights Terminated.
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Table A2: Stylized Facts from Foster Care - Effect of Disability

Foster
matched

Disability γ -0.043***
(0.002)

Mean of dependent 0.934
variable
Number of child-period 1,165,818
observations

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS). All
specifications control for child’s demographics, states indicators and period indicators. The first
and second columns consider sample A, third and fifth columns use sample B, and the fourth col-
umn uses sample C. Standard errors are cluster at the state-period level and shown in parentheses.
***P < 0.01; **P < 0.05; *P < 0.10.
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B Appendix: Omitted Equations

B.1 Endogenous Distribution of Children

A parent can meet a child who is unmatched or f-matched with quality q. Thus,
an unmatched parent meets a child (x, q̄) according to the probability distribution
m̂(x, q̄) where:

m̂(x, q̄) =


uc(x)∑

x u
c(x)+

∑
qm(x,q)

if q̄ = q0

m(x,q)∑
x u

c(x)+
∑
qm(x,q)

if q̄ = q
(B.1)

Therefore, a parent meets an unmatched childxwith total probability πp(θ)m̂(x, q0).
Similarly, a parent meets a child (x, q) with total probability πp(θ)m̂(x, q).

B.2 Aggregate State of the Market

For each (x, q), m(x, q) satisfies the following equality:

m(x, q)

{
πc(θ)

∑
M(x,q)

f(s) +
(
1− πc(θt)

∑
M(x,q)

f(s)
)[
δx +

(
1− δx

)
d(x, q)a(x, q)

]}
︸ ︷︷ ︸

mass destruction

=

uc(x)πc(θ)
∑
M(x,q0)

f(s)g(q|s)
(
1− δx

)(
1− d(x, q)

)(
1− a(x, q)

)
+
∑
q′

m(x, q′)πc(θ)
∑
M(x,q′)

f(s)g(q|s)
(
1− δx

)(
1− d(x, q)

)(
1− a(x, q)

)
︸ ︷︷ ︸

mass creation

(B.2)

For each x, uc(x) satisfies the following equality:

uc(x)

{
πc(θ)

∑
M(x,q0)

f(s)
∑
q

[
δx +

(
1− δx

)(
1− d(x, q)

)
g(q|s)

]
+
(
1− πc(θ)

∑
M(x,q0)

f(s)
)
δx

}
=

∑
q

m(x, q)
(
1− δx

){
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s)d(x, q′) +
(
1− πc(θ)

∑
M(x,q)

f(s)
)
d(x, q)

}
+ ρl(x) (B.3)
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B.3 Children’ Decision Conditions

Child (x, q) chooses ac(x, q) = 1 if and only if:

bc(x, q, a)

1− β
> max

(1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) ,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

 (B.4)

Child (x, q) chooses dc(x, q) = 1 if and only if:

(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) > max

{
bc(x, q, a)

1− β
,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

 (B.5)

B.4 Parents’ Decision Conditions

A parent chooses in = 1 if and only if:

− k + βπp(θ)
∑
M(x,q̄)

∑
x,q̄

Es[P(x, q)]m̂(x, q̄)f(s) > 0 (B.6)

Parent (x, q) chooses ap(x, q) = 1 if and only if:

bp(x, q, a)

1− β
> max

(1− πc(θ) ∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) , Pu


(B.7)
Parent (x, q) chooses dp(x, q) = 1 if and only if:

Pu > max

(1− πc(θ) ∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) , b
p(x, q, a)

1− β


(B.8)
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C Appendix: Definition of Equilibrium

I use the following equilibrium definition:

Definition 2. A foster care equilibrium consists of tuple (M, dc, dp, ac, ap, in, C,Pu,P , φ)

such that the following properties are satisfied:

(1) Value Functions.

(a) Given (M, dc, dp, ac, ap, φ), value functions C(x, q0) and C(x, q) are specified
by Equations 3 and 4, respectively.

(b) Given (M, dc, dp, ac, ap, in, φ), value functions Pu and P(x, q) are specified
by Equations 5 and 6, respectively.

(2) Strategies.

(a) Given (dc, dp, ac, ap, C,Pu,P , φ), s ∈ M(x, q̄) if and only if Es[P(x, q)] ≥
Pu and Es[C(x, q)] ≥ C(x, q̄).

(b) Given (M, dp, ap, C, φ), ac(x, q) = 1 if and only if Equation B.4 holds, and
dc(x, q) = 1 if and only if Equation B.5 holds.

(c) Given (M, dc, ac,Pu,P , φ), in = yes if and only if B.6 holds, ap(x, q) = 1 if
and only if Equation B.7 holds, and dp(x, q) is one if and only if Equation B.8
holds.

(3) Aggregate state of the market.

(a) Given (M, dc, dp, ac, ap, in,Pu,P , uc,m), up satisfies Equation 7.

(b) Given (M, dc, dp, ac, ap), for each x, {m(x, qi)}Ni=1 and uc(x) solve the system
of equations given by Equations B.2 and B.3.
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D Appendix: Proofs of Equilibrium Analysis

D.1 Proof of Proposition 1

I start by describing the destruction strategies of children and parents. Lemma 1
states that, in any foster care equilibrium, child (x, q) does not destroy if bc(x, q, f)

is non-negative.

Lemma 1 (Destruction Strategies of Children). In any foster care equilibrium, dc(x, q) =

0 if bc(x, q, f) ≥ 0 for all (x, q).

Proof. Fixing (x, q), assume that bc(x, q, f) is non-negative. By contradiction, sup-
pose dc(x, q) = 1 then, by the equilibrium definition, it follows that Ĉ(x, q0) >

Ĉ(x, q), that is:

(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) >(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s) (D.1)

By assumption Ĉ(x, q0) > Ĉ(x, q), then the value function for child (x, q) is:

C(x, q) = bc(x, q, f) + βδx
bc(x, q2, a)

1− β
+ β(1− δx)

[(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

Since bc(x, q, f) is non-negative, it follows that:

C(x, q) = bc(x, q, f) + βδx
bc(x, q2, a)

1− β
+ β(1− δx)

[(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

≥ βδx
bc(x, q2, a)

1− β
+ β(1− δx)

[(
1− πc(θ)

∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

= C(x, q0)

In equilibrium, s ∈M(x, q̄) if and only ifEs[C(x, q)] ≥ C(x, q̄) andEs[P(x, q)] ≥ Pu.
Thus, if C(x, q) ≥ C(x, q0) thenM(x, q) ⊆ M(x, q0). Now, I show that C(x, q) ≥
C(x, q0) contradicts Ĉ(x, q0) > Ĉ(x, q). For this, I analyze two cases:
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Case 1: Suppose C(x, q) = C(x, q0), then M(x, q) = M(x, q0). Thus, Ĉ(x, q) =

Ĉ(x, q0) which implies that dc(x, q) = 0. A contradiction.

Case 2: Suppose C(x, q) > C(x, q0), thenM(x, q) ⊂M(x, q0). Here, I define the set
M̂(x, q) = {s ∈ S|s ∈M(x, q0) \M(x, q)}. Thus, the following holds:

Ĉ(x, q) =
(

1− πc(θ)
∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

=
(

1− πc(θ)
)
C(x, q) + πc(θ)

∑
s/∈M(x,q)

f(s)C(x, q) + πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

=
(

1− πc(θ)
)
C(x, q) + πc(θ)

∑
s/∈M(x,q0)

f(s)C(x, q) + πc(θ)
∑

s∈M̂(x,q)

f(s)C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

>
(

1− πc(θ)
)
C(x, q0) + πc(θ)

∑
s/∈M(x,q0)

f(s)C(x, q0) + πc(θ)
∑

s∈M̂(x,q)

f(s)C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

By definition, if s ∈ M̂(x, q) then C(x, q) > Es[C(x, q)] > C(x, q0). Thus, the follow-
ing holds:

Ĉ(x, q) >
(

1− πc(θ)
)
C(x, q0) + πc(θ)

∑
s/∈M(x,q0)

f(s)C(x, q0) + πc(θ)
∑

s∈M̂(x,q)

f(s)C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

>
(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) = Ĉ(x, q0)

which contradicts equation D.1. Hence, if bc(x, q, f) ≥ 0 then dc(x, q) = 0.

Lemma 2 shows that parents destroy an f-match of quality q with child x if and
only if bp(x, q, f) is negative.

Lemma 2 (Destruction Strategies of Parents). Assume parents’ payoffs satisfy As-
sumption 2(a). In any foster care equilibrium, dp(x, q) = 1 if and only if bp(x, q, f) < 0

for all (x, q).

Proof. (⇒) Fix (x, q). Assume dp(x, q) = 1, then the following inequality must
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hold:

0 > max

(1− πc(θ) ∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) , b
p(x, q, a)

1− β


By contradiction, suppose bp(x, q, f) is non-negative. Since 1−πc(θ)

∑
M(x,q) f(s) ≥

0 and 1 − β(1 − δx)
(
1 − πc(θ)

∑
M(x,q) f(s)

)
≥ 0, there is a contradiction. Hence,

dp(x, q) = 1 only if bp(x, q, f) is negative.

(⇐) Fixing (x, q), assume that bp(x, q, f) is negative. By contradiction, suppose
dp(x, q) = 0. There are two possible cases:

Case 1: Suppose ap(x, q) = 1, then bp(x,q,a)
1−β > 0 must hold. Since bp(x, q, f) is nega-

tive then, by assumption 2(a), bp(x, q, a) is also negative. Hence, there is a contra-
diction.

Case 2: Suppose ap(x, q) = 0 and dp(x, q) = 0, then the following inequality must
hold:(

1− πc(θ)
∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) ≥ max

{
0 , b

p(x, q, a)

1− β

}

Since bp(x, q, f) is negative then, by assumption 2(a), bp(x, q, a) is also negative.
Thus, it must be that dp(x, q) = 1.

Now, I prove Proposition 1 using Lemmas 1 and 2. By Lemma 1 and Assump-
tion 1(a), it follows that dc(x, q) = 0 for all (x, q). This implies that the total proba-
bility of destruction of an f-match depends on the destruction strategies of parents.

(i) Fix some quality q. Suppose a parent f-matched to child x2 when the quality
is q chooses dp(x2, q) = 1. Then, by Lemma 2, bp(x2, q, f) is negative. By
Assumption 2(b), bp(x1, q, f) is also negative. Thus, by Lemma 2, dp(x1, q) =

1. Hence, d(x1, q) ≥ d(x2, q).

(ii) Fix some child x. Suppose a parent f-matched to child x when the quality
is q chooses dp(x, q) = 1. Then, by Lemma 2, bp(x, q, f) is negative. Now,
consider q′ such that q > q′. By Assumption 2(c), bp(x, q′, f) is also negative.
Thus, by Lemma 2, dp(x, q′) = 1. Hence, d(x, q′) ≥ d(x, q) whenever q > q′.

D.2 Proof of Proposition 2

I start by describing the f-match formation strategies of unmatched children and
parents. Lemma 3 shows that child (x, q0) announces foster after observing signal
s if Es[bc(x, q, f)] is non-negative.
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Lemma 3 (F-match Formation Strategies of Unmatched Children). In any foster
care equilibrium, s ∈ F c(x, q0) if Es[bc(x, q, f)] ≥ 0 for all (x, s).

Proof. Fix x. In any foster care equilibrium, s ∈ F c(x, q0) if and only if Es[C(x, q)] ≥
C(x, q0). I show that, for all s ∈ S, if Es[bc(x, q, f)] ≥ 0 then Es[C(x, q)] ≥ C(x, q0).
Note that, since the destruction of f-matches is unilateral, the conditional expected
value Es[C(x, q)] is bounded bellow by

∑
q b

c(x, q, f)g(q|s) + βδx
bc(x,q2,a)

1−β + β(1 −
δx)Ĉ(x, q0). Assuming that Es[bc(x, q, f)] is non-negative, the following inequality
holds:

Es[C(x, q)] ≥
∑
q

bc(x, q, f)g(q|s) + βδx
bc(x, q2, a)

1− β
+ β(1− δx)Ĉ(x, q0)

≥ βδx
bc(x, q2, a)

1− β
+ β(1− δx)Ĉ(x, q0) = C(x, q0)

Hence, if Es[bc(x, q, f)] ≥ 0 then Es[C(x, q)] ≥ C(x, q0).

Lemma 4 establishes that parents announces foster after observing signal s if
and only if the conditional expected payoff of being f-matched is non-negative.

Lemma 4 (F-match Formation Strategies of Parents). Assume parents’ payoffs sat-
isfy Assumption 4. In any foster care equilibrium, s ∈ F p(x) if and only ifEs[bp(x, q, f)] ≥
0 for all (x, s).

Proof. (⇒) Fix x. In any foster care equilibrium, s ∈ F p(x) if and only ifEs[P(x, q)] ≥
0. I show that if Es[bp(x, q, f)] ≥ 0 then Es[P(x, q)] ≥ 0. Fixing s, consider the con-
ditional expected value:

Es[P(x, q)] =
∑
q

bp(x, q, f)g(q|s)

+ β(1− δx)
∑
q

[
ac(x, q)max

{
bp(x, q, a)

1− β
, 0 ,

(
1− πc(θ)

∑
M(x,q) f(s)

)
bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

)}

+
(
1− dp(x, q)− ap(x, q)

)
max

{
0 ,

(
1− πc(θ)

∑
M(x,q) f(s)

)
bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

)}]g(q|s)
Since f-match destruction is unilateral, the conditional expected value Es[P(x, q)]

is bounded bellow byEs[bp(x, q, f)].Thus, ifEs[bp(x, q, f)] ≥ 0 thenEs[P(x, q)] ≥ 0 .

(⇐) Fix (x, s). I show that, if Es[bp(x, q, f)] is negative then Es[P(x, q)] is also neg-
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ative. Note that, Es[P(x, q)] is bounded above by the following expression:

∑
q

P(x, q)g(q|s) =
∑
q

bp(x, q, f)g(q|s)

+ β(1− δx)
∑
q

[
max

{
bp(x, q, a)

1− β
, 0 , bp(x, q, f)

1− β (1− δx)

}]
g(q|s)

Since
∑

q b
p(x, q)g(q|s) is negative, by Assumption 4,

∑
q P(x, q)g(q|s) is also neg-

ative.

Now, I prove Proposition 2 using Lemmas 3 and 4. By definition, f-matches
must be mutually agreed upon s ∈ M(x, q0) if and only if s ∈ F c(x, q0) and s ∈
F p(x). By Assumption 1(a), it follows that Es[bc(x, q, f)] ≥ 0 for all s ∈ S. Hence,
by Lemma 3, F c(x, q0) = S.

(i) Fix signal s, I show that if s ∈ F p(x1) then s ∈ F p(x2). Suppose s ∈ F p(x1)

then, by Lemma 4, it follows that Es[bp(x1, q, f)] must be non-negative. Since
bp(x2, q, f) ≥ bp(x1, q, f) for all q, by Assumption 2(b), then Es[bp(x2, q, f)]

is also non-negative. Thus, by Lemma 4, s ∈ F p(x2). By Assumption 3, it
follows thatF p(x1) andF p(x2) are non-empty. Hence,M(x, q0) is non-empty
for all x, andM(x1, q0) ⊆M(x2, q0).

(ii) Fix child x. Consider s and s′ such that s′ > s. I show that, if s ∈ F p(x) then
s′ ∈ F p(x). Suppose s ∈ F p(x) then, by Lemma 4, it follows thatEs[bp(x, q, f)]

is non-negative. Given that G(q|s′) ≤ G(q|s) and bp(x, q, f) is increasing in q
(Assumption 2(c)), it follows thatEs′ [bp(x, q, f)] is also non-negative. Hence,
by Lemma 4, s′ ∈ F p(x). Hence, if s ∈M(x, q0) then s′ ∈M(x, q0).

D.3 Proof of Proposition 3

First I establish that, as a best-response, children with and without a disability
choose the same f-match formation strategy, and both are more willing to separate
from an f-match of low-quality q1 than a high-quality match q2.

Lemma 5 (F-match formation strategies of f-matched children). Assume children’
payoffs satisfy Assumptions 1(a),(c)-(d). Then, for all x, F c(x, q1) = S and F c(x, q2) =

{∅} whenever d(x, q1) ≥ d(x, q2) holds.

Proof. For each x, it follows that F c(x, q2)∩ F c(x, q1) = S or F c(x, q2)∩ F c(x, q1) =

{∅}. The reason is the following. For each signal, s ∈ F c(x, q2) if and only if
Es[C(x, q)] = C(x, q1)g(q1|s) + C(x, q2)g(q2|s) ≥ C(x, q2). Then, it must be that
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C(x, q1) ≥ C(x, q2) independent of the distributions. Now, if C(x, q1) > C(x, q2)

then s /∈ F c(x, q1), and if C(x, q1) = C(x, q2) then s ∈ F c(x, q1). Hence, there are
three possible cases:

(1) F c(x, q2) = F c(x, q1) = {s1, s2}.

(2) F c(x, q2) = {s1, s2} and F c(x, q1) = {∅}.

(3) F c(x, q2) = {∅} and F c(x, q1) = {s1, s2}.

I show that C(x, q2) > C(x, q1) holds, thus only the third case is feasible. Since
d(x, q1) ≥ d(x, q2), the following cases might arise:

Case a: Suppose a(x, q1) = 1, then C(x, q1) = bc(x, q1, f) + βδx
bc(x,q2,a)

1−β + β(1 −
δx)

bc(x,q1,a)
1−β

(a1) If a(x, q2) = 1, then C(x, q2) − C(x, q1) = bc(x, q2, f) − bc(x, q1, f) + β(1 −
δx)
[
bc(x,q2,a)

1−β − bc(x,q1,a)
1−β

]
(a2) If a(x, q2) = 0 and d(x, q2) = 0, then C(x, q2) − C(x, q1) = bc(x, q2, f) −

bc(x, q1, f) + β(1− δx)
[
Ĉ(x, q2)− bc(x,q1,a)

1−β

]
Case b: Suppose d(x, q1) = 1, then C(x, q1) = bc(x, q1, f) + βδx

bc(x,q2,a)
1−β + β(1 −

δx)Ĉ(x, q0)

(b1) If d(x, q2) = 1, then C(x, q2)− C(x, q1) = bc(x, q2, f)− bc(x, q1, f)

(b2) If a(x, q2) = 1, then C(x, q2) − C(x, q1) = bc(x, q2, f) − bc(x, q1, f) + β(1 −
δx)
[
bc(x,q2,a)

1−β − Ĉ(x, q0)
]

(b3) If a(x, q2) = 0 and d(x, q2) = 0, then C(x, q2) − C(x, q1) = bc(x, q2, f) −
bc(x, q1, f) + β(1− δx)

[
Ĉ(x, q2)− Ĉ(x, q0)

]
Case c: Suppose a(x, q1) = 0 and d(x, q1) = 0, then C(x, q1) = bc(x, q1, f)+βδx

bc(x,q2,a)
1−β +

β(1− δx)Ĉ(x, q1)

(c1) If a(x, q2) = 1, then C(x, q2) − C(x, q1) = bc(x, q2, f) − bc(x, q1, f) + β(1 −
δx)
[
bc(x,q2,a)

1−β − Ĉ(x, q1)
]

(c2) If a(x, q2) = 0 and d(x, q2) = 0, then C(x, q2) − C(x, q1) = bc(x, q2, f) −
bc(x, q1, f) + β(1− δx)

[
Ĉ(x, q2)− Ĉ(x, q1)

]
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Assume 1(a) and 1(c), then C(x, q2)−C(x, q1) > 0 for cases (a1) and (b1). For case
(b3), if d(x, q2) = 0 then Ĉ(x, q2) ≥ Ĉ(x, q0). Thus, by Assumptions 1(a) and 1(c),
it follows that C(x, q2) − C(x, q1) > 0 in case (b3). By assumption 1(d), it follows
that bc(x,q2,a)

1−β ≥ Ĉ(x, q̄) for all q. Hence, by assumptions 1(a),(c)(d) it follows that
C(x, q2) − C(x, q1) > 0 for all the other cases. Therefore, F c(x1, q2) = F c(x2, q2) =

{∅} and F c(x1, q1) = F c(x2, q1) = {s1, s2}.

Now, I establish Proposition 3. By Assumptions 1(a), 2(a), and 2(c), Proposi-
tion 1(ii) holds. Thus, for children, Lemma 5 holds. For parents, by Assumptions
2(b), 3, and 4, Proposition 2(i) holds, that is, F p(x) is non-empty for all x, and
F p(x1) ⊆ F p(x2). Moreover, by adding Assumption 2(c), Proposition 2(ii) holds.
That is, for all x, if s1 ∈ F p(x) then s2 ∈ F p(x).

Since s ∈M(x, q) if and only if s ∈ F c(x, q) and s ∈ F p(x), the following holds:

(a) M(x, q1) is non-empty for all x.

(b) M(x, q2) = {∅} for all x.

(c) M(x1, q1) ⊆M(x2, q1).

(d) s1 ∈M(x, q1) implies s2 ∈M(x, q1) for all x.

Finally, sinceM(x, q2) = {∅}, then
∑
M(x,q2) f(s) = 0. Hence,

∑
M(x,q1) f(s) ≥∑

M(x,q2) f(s). Now, sinceM(x1, q1) ⊆M(x2, q1) then
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s)

for all q.

D.4 Proof of Proposition 4

I start by describing the adoption strategies of children and parents. Lemma 6
presents some properties of the adoption strategies of parents.

Lemma 6 (Adoption Strategies of Parents). Assume parents’ payoffs satisfy As-
sumptions 2(a)-(b) ,(d)-(e). Then, the adoption strategies of parents exhibit the following
properties.

(i) for each (x, q), if bp(x, q, a) > 0 and bp(x,q,a)
bp(x,q,f)

> 1−β
1−β(1−δx)

then ap(x, q) = 1.

(ii) for all q, if
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s) then the best-response of parents satisfies
the following: if ap(x1, q) = 1 then ap(x2, q) = 1.

(iii) for all x, if
∑
M(x,q′) f(s) ≥

∑
M(x1,q)

f(s) and bp(x, q′, a) > 0 whenever q′ <
q then the best-response of parents satisfies the following: if ap(x, q) = 1 then
ap(x, q′) = 1.
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Proof. Assume 2(a). A parent f-matched to child x when the quality is q an-
nounces adoption if and only if the following inequalities hold:

bp(x, q, a)

1− β
> 0 (D.2)

bp(x, q, a)

1− β
>
(
1− πc(θ)

∑
M(x,q)

f(s)
)
· bp(x, q, f)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) (D.3)

(i) Fix (x, q). Assume bp(x, q, a) is positive then ap(x, q) = 1 if and only if in-
equality D.3 holds. The right-hand side of this inequality is decreasing in
πc(θ)

∑
M(x,q) f(s). Thus, for ap(x, q) to take value one independent of the

endogenous objects πc(θ) andM(x, q), the following inequality must hold:

bp(x, q, a)

b(x, q)
>

1− β
1− β(1− δx)

Or, equivalently δx > bp(x,q,f)−bp(x,q,a)
bp(x,q,a)

1−β
β

.

(ii) Consider a parent f-matched to child x1 when the quality is q. Assume
ap(x1, q) = 1, then inequalities D.2 and D.3 hold. By Assumption 2(b), it
follows that bp(x2, q, a) > 0. Hence, ap(x1, q) = 1 implies ap(x2, q) = 1 if the
following inequalities holds:

bp(x2, q, a)

bp(x2, q, f)
>
bp(x1, q, a)

bp(x1, q, f)

and

(1− β)
(
1− πc(θ)

∑
M(x1,q)

f(s)
)

1− β(1− δx1)
(
1− πc(θ)

∑
M(x1,q)

f(s)
) ≥ (1− β)

(
1− πc(θ)

∑
M(x2,q)

f(s)
)

1− β(1− δx2)
(
1− πc(θ)

∑
M(x2,q)

f(s)
)

By Assumption 2(d), the first inequality holds. Moreover, since δx2 ≥ δx1

and
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s), the second inequality holds.

(iii) Consider a parent f-matched to a child x when the quality is q. Assume
ap(x, q) = 1, then inequalities D.2 and D.3 hold. Also, consider a parent f-
matched to child xwhen the quality is q′ such that q′ < q. Since bp(x, q′, f) ≥
0, then ap(x, q) = 1 implies ap(x, q′) = 1 if the following inequalities holds:

bp(x, q′, a)

bp(x, q′, f)
>
bp(x, q, a)

bp(x, q, f)
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(1− β)
(
1− πc(θ)

∑
M(x,q) f(s)

)
1− β(1− δx)

(
1− πc(θ)

∑
M(x,q) f(s)

) ≥
(1− β)

(
1− πc(θ)

∑
M(x,q′) f(s)

)
1− β(1− δx)

(
1− πc(θ)

∑
M(x,q′) f(s)

)
By Assumption 2(e), the first inequality always holds. The second inequal-
ity holds since

∑
M(x,q′) f(s) ≥

∑
M(x,q) f(s) by assumption.

The next lemma presents some properties of the adoption strategies of chil-
dren.

Lemma 7 (Adoption Strategies of Children). Assume children’ payoffs satisfy As-
sumptions 1(a)-(g), and 5(a)-(c). Moreover, suppose the following

(a) d(x, q2) = 0 for all x,

(b) M(x, q1) is non-empty for all x,

(c) M(x, q2) is empty for all x,

(d) M(x1, q1) ⊆M(x2, q1),

(e) s1 ∈M(x, q1) implies s2 ∈M(x, q1) for all x, and

(f) ap(x2, q) ≥ ap(x1, q) for all q.

Then, the adoption strategies of children are ac(x2, q) ≥ ac(x1, q) for all q. Moreover,
1 = ac(x, q2) ≥ ac(x, q1) for all x.

Proof. Fix child (x, q). Since dc(x, q) = 0 by Assumption 1(a) and Lemma 1, she
announce adoption if and only if:

bc(x, q, a)

1− β
>(

bc(x, q, f) + βδx
bc(x,q2,a)

1−β

)(
1− πc(θ)

∑
M(x,q) f(s)

)
+ πc(θ)

∑
M(x,q) Es[C(x, q)]f(s)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

)
(D.4)

SinceM(x, q2) = {∅}, inequality D.4 is equal to:

bc(x, q2, a)

1− β
>
bc(x, q2, f) + βδx

bc(x,q2,a)
1−β

1− β (1− δx)
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By Assumption 1(a), this inequality holds. Hence, ac(x, q2) = 1 for all x.

For all x, assume that M(x, q1) is non-empty , M(x1, q1) ⊆ M(x2, q1), and s1 ∈
M(x, q1) implies s2 ∈M(x, q1). Thus, there are three outcomes:

Case 1: SupposeM(x1, q1) = {s1, s2} andM(x2, q1) = {s1, s2}. Fixing (x, q1), in-
equality D.4 is equal to:

bc(x, q1, a)

{(
1−πc(θ)

)(
1−β

)
+βδx

(
1−πc(θ)

)
+πc(θ)

(
g(q2|s1)f(s1)+g(q2|s2)f(s2)

)}
>(

bc(x, q1, f) + βδx
bc(x, q2, a)

1− β

)
·(

1− πc(θ)
)(
1− β

)
+ C(x, q2) π

c(θ)
(
g(q2|s1)f(s1) + g(q2|s2

)
f(s2)

)(
1− β

)
(D.5)

Since d(x, q2) = 0 and given the strategies of parents, the value function C(x, q2)

can take two values:

C(x, q2) = bc(x, q2, f) + β b
c(x,q2,a)

1−β or C(x, q2) =
bc(x,q2,f)+βδx

bc(x,q2,a)
1−β

1−β(1−δx)
.

Now, since ap(x2, q) ≥ ap(x1, q) for all q, I analyze the following sub-cases:

(1a) Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)

)
+{

bc(x, q2, f)(1−β)+bc(x, q2, a)β−bc(x, q1, a)
}(
g(q2|s1)f(s1)+g(q2|s2)f(s2)

)
πc(θ)

(D.6)

where:

bc(x, q1, a)− bc(x, q1, f) > 0 by Assumption 1(a)
bc(x, q2, a)− bc(x, q1, a) > 0 by Assumption 1(c)

bc(x, q2, f)(1− β) + bc(x, q2, a)β − bc(x, q1, a) > 0 by Assumptions 1(c)-(d)

Now, I show that if Equation D.6 holds for child x1 then it also holds for child
x2. By Assumption 1(e), the following inequality holds:

{
bc(x2, q1, a)− bc(x2, q1, f)

}(
1− πc(θ)

)(
1− β

)
≥{

bc(x1, q1, a)− bc(x1, q1, f)
}(

1− πc(θ)
)(
1− β

)
(D.7)
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By Assumptions 1(f) and 5(a), the following inequality holds:

{
bc(x1, q2, a)− bc(x1, q1, a)

}
βδx1

(
1− πc(θ)

)
≥{

bc(x2, q2, a)− bc(x2, q1, a)
}
βδx2

(
1− πc(θ)

)
(D.8)

By Assumptions 1(f)-(g), the following inequality holds:

{
bc(x1, q2, f)(1− β) + bc(x1, q2, a)β − bc(x1, q1, a)

}
·(

g(q2|s1)f(s1) + g(q2|s2)f(s2)
)
πc(θ) ≥{

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)
}
·(

g(q2|s1)f(s1) + g(q2|s2)f(s2)
)
πc(θ) (D.9)

Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

(1b) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)

)
+{bc(x, q2, f)(1− β)

1− β(1− δx)
+
bc(x, q2, a)β δx

1− β(1− δx)
− bc(x, q1, a)

}
·(

g(q2|s1)f(s1) + g(q2|s2)f(s2)
)
πc(θ) (D.10)

Now, I show that if Equation D.10 holds for child x1 then it also holds for
child x2. Since Equations D.7 and D.8 hold, then I check whether the follow-
ing inequality is satisfied:

[
bc(x1, q2, f)(1− β) + bc(x1, q2, a)β − bc(x1, q1, a)

− {bc(x1, q2, f)− bc(x1, q1, f)}β(1− δx1)
](
1− β + βδx2

)
≥[

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)

− {bc(x2, q2, f)− bc(x2, q1, f)}β(1− δx2)
](
1− β + βδx1

)
(D.11)

After some algebra, this inequality holds given Assumptions 1(f)-(g) and
5(a). Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

(1c) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. I show that if Equation D.10 holds
for child x1 then Equation D.6 holds for child x2. Since Equations D.7 and
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D.8 hold, I check whether the following inequality is satisfied:

bc(x1, q2, f)(1− β) + bc(x1, q2, a)β − bc(x1, q1, a)

− β(1− δx1)
[
bc(x1, q2, a)− bc(x1, q1, a)

]
≥

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)

− β(1− δx1)
[
bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)

]
(D.12)

After some algebra, this inequality holds given assumptions 1(b),(f)-(g)
and 5(b). Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Case 2: SupposeM(x1, q1) = {s2} andM(x2, q1) = {s2}. Fixing (x, q1), inequality
D.4 is equal to:

bc(x, q1, a)
{(

1− πc(θ)f(s2)
)(
1− β

)
+ βδx

(
1− πc(θ)f(s2)

)
+ πc(θ)g(q2|s2)f(s2)

}
>(

bc(x, q1, f)+βδx
bc(x, q2, a)

1− β

)(
1−πc(θ)f(s2)

)(
1−β

)
+C(x, q2) π

c(θ)g(q2|s2)f(s2)
(
1−β

)
(D.13)

As in the previous case, I analyze the following sub-cases:

(2a) Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)f(s2)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)f(s2)

)
+{

bc(x, q2, f)(1− β) + bc(x, q2, a)β − bc(x, q1, a)
}
g(q2|s2)f(s2)π

c(θ) (D.14)

By Equations D.7, D.8 and D.9, it follows that if Equation D.14 holds for child
x1 then it also holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

(2b) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. The child announces adoption if
and only if the following inequality holds:

{
bc(x, q1, a)− bc(x, q1, f)

}(
1− πc(θ)f(s2)

)(
1− β

)
>{

bc(x, q2, a)− bc(x, q1, a)
}
βδx
(
1− πc(θ)f(s2)

)
+{bc(x, q2, f)(1− β)

1− β(1− δx)
+
bc(x, q2, a)β δx

1− β(1− δx)
− bc(x, q1, a)

}
g(q2|s2)f(s2)

)
πc(θ) (D.15)

By Equations D.7, D.8 and D.11, it follows that if Equation D.15 holds for
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child x1 then it also holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) =

1.

(2c) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. By Equations D.7, D.8 and D.12, it
follows that if Equation D.15 holds for child x1 then equation D.14 holds for
child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Case 3: SupposeM(x1, q1) = {s2} andM(x2, q1) = {s1, s2}.

(3a) Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. I show that if Equation D.14 holds
for child x1 then Equation D.6 holds for child x2. After some algebra, since
Equations D.7, D.8 and D.9 hold, it suffices to check whether the following
inequality holds:

{
bca(x1, q2, a)− bc(x1, q1, a)

}
βδx1 ≥

{
bc(x1, q2, a)− bc(x1, q1, f)

}(
1− β

)
+{

bc(x2, q2, f)(1− β) + bc(x2, q2, a)β − bc(x2, q1, a)
}
g(q2|s1) (D.16)

This inequality is satisfied by Assumption 5(c). Hence, if ac(x1, q1) = 1 then
ac(x2, q1) = 1.

(3b) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. I show that if Equation D.15 holds
for child x1 then Equation D.10 holds for child x2. After some algebra, since
Equations D.7, D.8 and D.9 hold, it suffices to check whether the following
inequality holds:

{
bc(x1, q2, a)− bc(x1, q1, a)

}
βδx1 ≥

{
bc(x1, q2, a)− bc(x1, q1, f)

}(
1− β

)
+{bc(x2, q2, f)(1− β)

1− β(1− δx2)
+
bc(x2, q2, a)βδx2
1− β(1− δx2)

− bc(x2, q1, a)
}
g(q2|s1) (D.17)

This inequality is satisfied by Assumption 5(c). Hence, if ac(x1, q1) = 1 then
ac(x2, q1) = 1.

(3c) Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. Since Equations D.7, D.8, D.12 and
D.16 hold, it follows that if Equation D.15 holds for child x1 then Equation
D.6 holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Now, I establish Proposition 4.

(i) Fix q. By definition, a(x, q) = 1 if and only if ac(x, q) = 1 and ap(x, q) = 1.
Since ac(x2, q) ≥ ac(x1, q) and ap(x2, q) ≥ ap(x1, q), then a(x2, q) ≥ a(x1, q).
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(ii) Fix x. Suppose bp(x, q1, a) > 0, then bp(x, q2, a) > 0. Since bp(x,q2,a)
bp(x,q2,f)

≤ 1−β
1−β(1−δx)

and M(x, q2) is empty, then ap(x, q2) = 0. Thus, ap(x, q1) ≥ ap(x, q2) = 0.
Since ac(x, q2) ≥ ac(x, q1), it follows that a(x, q1) ≥ a(x, q2) = 0.
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E Appendix: Proofs of Empirical Facts and Model Pre-
dictions

E.1 Proof of Corollary 1

(i) I show thatA(x2, q0) ≥ A(x1, q0), andA(x2, q) ≥ A(x1, q) for all q. For the first
inequality, the result follows from Propositions 2(i) and 4(i), M(x1, q0) ⊆
M(x2, q0) and a(x2, q) ≥ a(x1, q) for all q. Now, defined the following set
M̂(x2, q0) = {s ∈ S|s ∈M(x2, q0) \M(x1, q0)}, then the following holds:

A(x2, q0) = δx2 + (1− δx2)
{
πc(θ)

∑
M(x2,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]}

= δx2 + (1− δx2)
{
πc(θ)

∑
M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

+ πc(θ)
∑

M̂(x2,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

︸ ︷︷ ︸
≥0

}

≥ δx2 + (1− δx2)
{
πc(θ)

∑
M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

︸ ︷︷ ︸
≥δx1+(1−δx1 ) a(x1,q′)

}

≥ δx1 + (1− δx1)
{
πc(θ)

∑
M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]}

︸ ︷︷ ︸
=A(x1,q0)

Now, for the second inequality, fix quality q. By Propositions 1(i) and 4(i),
there are three cases to analyze:

Case 1: Suppose a(x1, q) = 1, then a(x2, q) = 1. Thus, A(x2, q) = A(x1, q).

Case 2: Suppose d(x1, q) = 1, then:

(2a) If a(x2, q) = 1, then A(x2, q) = 1 and A(x1, q) = A(x1, q0) ≤ 1.

(2b) If d(x2, q) = 1, then A(x2, q) = A(x2, q0) and A(x1, q) = A(x1, q0).

(2c) If a(x2, q) = d(x2, q) = 0, then:

A(x2, q)−A(x1, q) =

δx2 + (1− δx2) πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

− πc(θ)
∑

M(x1,q0)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]

49



Note that, it suffices to show that δx2 > δx1 +(1−δx1) πc(θ) holds. Since
δx2−δx1
(1−δx1 )

> π, then A(x2, q) ≥ A(x1, q).

Case 3: Suppose a(x1, q) = 0 and d(x1, q) = 0.

(3a) If a(x2, q) = 1, then A(x2, q) = 1 and A(x1, q) ≤ 1.

(3b) If a(x2, q) = d(x2, q) = 0, then:

A(x2, q)− A(x1, q) =

δx2 + (1− δx2) πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s)
[
δx2 +

(
1− δx2

)
a(x2, q

′)
]

−
{
δx1 + (1− δx1) πc(θ)

∑
M(x1,q)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]}

By Proposition 3(i) and 4(i), the following inequality holds:∑
M(x2,q)

f(s)
∑
q

g(q|s) a(x2, q) ≥
∑
M(x1,q)

f(s)
∑
q

g(q|s) a(x1, q)

Hence, A(x2, q) ≥ A(x1, q).

(ii) For each child x, I show that A(x, q1) ≥ A(x, q2). By Propositions 3(ii) and
4(ii), it follows that A(x, q2) = δx. For quality q1, by Proposition 1(ii), there
are three cases to analyze:

Case 1: Suppose a(x, q1) = 1, then A(x, q1) = 1. Thus, A(x, q1) ≥ A(x, q2).

Case 2: Suppose d(x, q1) = 1, then A(x, q1) = δx + (1 − δx) A(x, q0). Thus,
A(x, q1) ≥ A(x, q2).

Case 3: Suppose a(x, q1) = d(x, q1) = 0, then:

A(x, q1) = δx + (1− δx) πc(θ)
∑
M(x,q1)

f(s)
∑
q′

g(q′|s)
[
δx1 +

(
1− δx1

)
a(x1, q

′)
]

Thus, A(x, q1) ≥ A(x, q2).

E.2 Proof of Corollary 2

(i) I show that D(x1, q) ≥ D(x2, q) for all q. Fixing quality q, by Propositions
1(i) and 4(i), there are three cases to analyze:

Case 1: Suppose a(x1, q) = a(x2, q) = 1, then D(x1, q) = D(x2, q)
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Case 2: Suppose d(x1, q) = 1, then:

D(x1, q)−D(x2, q) =

(1− δx1)− (1− δx2)(1− a(x2, q))
[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]

It follows that D(x1, q) ≥ D(x2, q) ≥ 0 holds from δx2 ≥ δx1 and:

1 ≥ (1− a(x2, q))
[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]
≥ 0

Case 3: Suppose d(x1, q) = a(x1, q) = 0, then:

D(x1, q)−D(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)

− (1− δx2)(1− a(x2, q))
[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]

(3a) If a(x2, q) = 1, then:

D(x1, q)−D(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s) ≥ 0 (E.1)

(3b) Suppose a(x2, q) = d(x2, q) = 0 then:

D(x1, q)−D(x2, q) = (1−δx1)πc(θ)
∑
M(x1,q)

f(s)−(1−δx2)πc(θ)
∑
M(x2,q)

f(s)

For match quality q2, from Proposition 3 we know thatM(x, q2) = {∅}
for all x. Hence, D(x1, q2) ≥ D(x2, q2).
For match quality q1, since 1 ≥

∑
M(x2,q1) f(s), it suffices to check that

the following inequality holds:

(1− δx1)πc(θ)
∑

M(x1,q1)

f(s)− (1− δx2)πc(θ) ≥ 0

Proposition 3 shows thatM(x1, q1) = {s1, s2} orM(x1, q1) = {s2}. In
the first case, D(x1, q1) − D(x2, q1) = (1 − δx1) − (1 − δx2) ≥ 0. In the
second case, D(x1, q1)−D(x2, q1) = (1− δx1)πc(θ)f(s2)− (1− δx2)πc(θ)
which is positive if and only if f(s2) ≥ (1−δx2 )

(1−δx1 )
.

(ii) Fixing child x, suppose that a(x, q1) = a(x, q2) = 0. From Propositions 1(ii)
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and 3(ii), d(x, q1) ≥ d(x, q2) and
∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0 respec-

tively. Hence, the following inequality holds:

D(x, q1) = (1− δx)
[
d(x, q1) +

(
1− d(x, q1)

)
πc(θ)

∑
M(x,q1)

f(s)
]

≥ (1− δx)
[
d(x, q2) +

(
1− d(x, q2)

)
πc(θ)

∑
M(x,q1)

f(s)
]

≥ (1− δx)
[
d(x, q2) +

(
1− d(x, q2)

)
πc(θ)

∑
M(x,q2)

f(s)
]

= D(x, q2)

E.3 Proof of Corollary 3

The result follows from Propositions 1(i) and 2(i): d(x1, q) ≥ d(x2, q) for all q, and
M(x1, q0) ⊆ M(x2, q0). Let M̂(x2, q0) = {s ∈ S|s ∈M(x2, q0) \M(x1, q0)}, then
the following inequality holds:

M(x2) = πc(θ)
∑

M(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x2, q)

)
≥ πc(θ)

∑
M(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
≥ πc(θ)

[ ∑
M̂(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
+

∑
M(x1,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)]
≥ πc(θ)

∑
M(x1,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
= M(x1)

Hence, M(x2) ≥M(x1).

E.4 Proof of Corollary 4

(i) Fixing quality q, I show that U(x1, q) ≥ U(x2, q) for all q. From Propositions
1(i) and 4(i), there are three cases to analyze:

Case 1: Suppose a(x1, q) = a(x2, q) = 1 then U(x1, q) = U(x2, q)
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Case 2: Suppose d(x1, q) = 1 then:

U(x1, q)− U(x2, q) = (1− δx1)
(

1−M(x1)
)

− (1− δx2)
(
1− a(x2, q)

){
d(x2, q)

(
1−M(x2)

)
+
(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

}

(2a) If a(x2, q) = 1, then U(x1, q)− U(x2, q) = (1− δx1)(1−M3(x1)) ≥ 0.

(2b) If d(x2, q) = 1, then:

U(x1, q)− U(x2, q) = (1− δx1)(1−M(x1))− (1− δx2)(1− γ3(x2))

By Corollary 3, it follows that U(x1, q) ≥ U(x2, q).

(2c) If a(x2, q) = d(x2, q) = 0, then:

U(x1, q)− U(x2, q) =

(1− δx1)(1−M(x1))− (1− δx2)πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

For match quality q2, Proposition 3 shows thatM(x, q2) = {∅} for all x.
Hence, U(x1, q2)− U(x2, q2) = (1− δx1)(1−M(x1)) ≥ 0.
For match quality q1, since the following holds:

(1− πc(θ)) ≥ (1−M(x1)) and 1 ≥
∑
M(x2,q1) f(s)

∑
q′ g(q′|s) d(x2, q

′)

it suffices to check that the following inequality holds:

(1− δx1)(1− πc(θ))− (1− δx2)πc(θ) ≥ 0

which holds if and only if 1−δx1
2−δx1−δx2

≥ π.

Case 3: Suppose a(x1, q) = 0 and d(x1, q) = 0 then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′)

− (1− δx2)
(
1− a(x2, q)

){
d(x2, q)

(
1−M(x2)

)
+
(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

}
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(3a) If a(x2, q) = 1, then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′) ≥ 0

(3b) If a(x2, q) = d(x2, q) = 0, then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′)

− (1− δx2)πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

For match quality q2, Proposition 3 states thatM(x, q2) = {∅} for all x.
Hence, U(x1, q) = U(x2, q).
For match quality q1, since 1 ≥

∑
M(x2,q1) f(s), it suffices to check that

the following inequality holds:

(1− δx1)πc(θ)
∑

M(x1,q1)

f(s)− (1− δx2)πc(θ) ≥ 0

Proposition 3 shows thatM(x1, q1) 6= {∅} andM(x1, q1) = {s1, s2} or
M(x1, q1) = {s2}. In the first case,D(x1, q1)−D(x2, q1) = (1−δx1)−(1−
δx2) ≥ 0. In the second case,D(x1, q1)−D(x2, q1) = (1−δx1)πc(θ)f(s2)−
(1− δx2)πc(θ) which is positive if and only if f(s2) ≥ (1−δx2 )

(1−δx1 )
.

(ii) Fixing child x, suppose that a(x, q1) = 0 and a(x, q2) = 0. By Proposi-
tions 1(ii) and 3(ii) it follows that d(x, q1) ≥ d(x, q2) and

∑
M(x,q1) f(s) ≥∑

M(x,q2) f(s) = 0 respectively. Hence, the following inequality holds:

U(x, q1) = (1− δx)
{
d(x, q1)

(
1−M(x)

)
+
(
1− d(x, q1)

)
πc(θ)

∑
M(x,q1)

f(s)
∑
q′

g(q′|s) d(x, q′)
}

≥ (1− δx)
{
d(x, q1)

(
1−M(x)

)
+
(
1− d(x, q1)

)
πc(θ)

∑
M(x,q2)

f(s)
∑
q′

g(q′|s) d(x, q′)

︸ ︷︷ ︸
=0

}

≥ (1− δx) d(x, q2)
(
1−M(x)

)
= U(x, q2)
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