
Designing the Menu of Licenses for Foster Care∗

Altınok, Ahmet † MacDonald, Diana‡

January 2025

Abstract

This paper explores US foster parent licensing, essential for placing foster chil-

dren. We develop a theoretical matching model to study the optimal menu of li-

censes designed to screen foster parents, considering heterogeneous agents, ad-

verse selection, and search frictions. Our findings highlight the following: (i) op-

timal allocation calls for a segregation of the market, (ii) simple transfer schedules

achieve the purpose, (iii) complementarities do not ensure Positive Assortative

Matching (PAM) in equilibrium. We provide conditions that guarantee PAM. Our

results suggest that the current licensingmenu partly alignswith optimal solutions

but may fall short in screening.
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1 Introduction

Foster care can be viewed as a two-sided matching market with heterogeneous chil-

dren and parents, where foster parents have preferences over children, and child wel-

fare agencies have preferences over foster parents (on behalf of children).1 As in many

other markets, matches form in the presence of private information, since a foster par-

ent’s ability to provide care for a child is unknown to the child welfare agency. Aiming

at solving for this adverse selection problem, amenu of licenses is offered to foster parents.

In practice, a license specifies the type of child a parent can foster and the correspond-

ing transfer received by foster parents. Furthermore, as a rule of thumb, children are

grouped by the level of care needed, and transfers vary across groups. For example,

foster parents in Arizona can choose between two licenses: traditional and therapeutic.

In the former, foster parents can only foster children with standard needs, whereas in

the latter foster parents can foster children with standard needs and also children with

special needs. Parents receive US$20.80 per day for children with standard needs, and

US$36.87 for children with special needs. These transfers are based only on the esti-

mated cost of providing care for a child, and do not depend on any other characteristic

of the market. This raises the question of whether the current menu of licenses can

achieve its screening objective, and more importantly, whether the current mechanism

used in the system is optimal.

This paper develops a theoretical matching model to study the optimal menu of

licenses designed to screen foster parents in the US foster care system. We construct a

two-sided matching model with heterogeneous agents (children differ in the level of

care needed and parents differ in their ability to provide care), private information on a

parent’s attribute, and a designer who coordinates match formation through amenu of

contracts.2 Themain innovation of our paper lies in introducing an endogenous search

friction that varies with market size, an element not entirely within the designer’s con-

trol. The analysis focuses on incentive-compatible licenses, which specify an allocation

of parents across submarkets of children and the corresponding transfers, and the sort-

ing patterns that might arise in equilibrium.
1See Appendix A for a detailed description of foster care in the US.
2Our environment can be used to analyze a matching problem between adoptive children and

prospective adoptive parents, provided that the designer offers a subsidy to the adoptive parents.
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Our results suggests that the menu of licenses used in practice exhibits some of the

properties of the optimal solution. First, we find that it is never optimal to randomly

match all types of parents to all types of children, that is, optimal allocation calls for a

segregation of the market. Second, we show that a simple transfer schedule achieves

the purpose, that is, parents holding different licenses and providing care for the same

type of child can receive the same monetary transfer. However, the transfers must

not only account for the child’s attribute as in practice, but also for other features of

the market such as the distributions of agents. Lastly, we find that complementarity

in child’s and parent’s attributes is not sufficient to ensure that Positive Assortative

Matching (PAM) will arise in equilibrium. Thus, we provide sufficient conditions for

the equilibrium sorting to exhibit PAM: either a stronger complementarity determined

by the distribution of children’ attributes, or a lower bound on the share of children

with special needs.3

The model is as follows. There are two sides of the market populated by a contin-

uum of agents: children and parents. Children are heterogeneous in the level of care

needed, low- (x1) or high-needs (x2); and parents are heterogeneous in their ability to

provide care, low-(y1) or high-ability (y2). We start our analysis with this binary type

space for parents, which we later extend to a continuum of types. A child’s attribute is

common knowledge, and a parent’s attribute is private information. We assume that

children receive greater payoffs when matched than unmatched, and parents incur a

cost when a match forms. The designer maximizes expected utility from children mi-

nus transfers to parents. We assume that the surplus of each match is nonnegative,

thus profitable.4 As in practice, we construct submarkets for each child’s attribute, that

is, there is a submarket populated by low-needs children and another submarket pop-

ulated by high-needs children.

First, the designer announces and commits to amenu of licenses. A license specifies:

(1) a randomization rule that determines the probability with which a parent is allo-

cated into each submarket, and (2) a corresponding transferwhen amatch forms. After

observing the menu, each parent chooses a license. Next, the randomization device is
3Ideally, we would empirically test our theoretical predictions on optimal sorting patterns, but this

is not feasible due to limited data on parents’ attributes.
4In our framework, surplus of a match is a cost-net benefit function whose argument are parent’s

ability and child’s level of care needed.
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realized and parents are allocated across submarkets5 determining endogenously the

parents-to-children ratio (market tightness) for each submarket. Lastly, within each

submarket, meetings take place,matches are formed, and transfers occur. We introduce

a search friction by assuming that meetings are not certain, that is, the probability of a

child (parent) meeting a parent (child) is represented by a meeting technology which

is a function of the market tightness. Thus, when parents choose a license that guar-

antees allocation to a specific submarket with probability one, they are certain about

the type of child they will be matched with but remain uncertain about whether the

match will occur. However, if a parent selects a license that allocates them to either

submarket with a strictly positive probability, they face uncertainty not only about the

type of child they will be matched with but also whether a match will take place.

Our search friction assumption is motivated by the fact that child welfare agencies

do not act as matchmakers but instead define feasible matches through a menu of li-

censes and guidelines. In practice, socialworkers are responsible for contacting parents

about a specific child in a decentralized manner. Thus, the randomization mechanism

can be interpreted as a guideline: for example, if a parent is deemed ’better’ suited to

care for low-needs children than high-needs children, the system would aim to allo-

cate that parent to the first submarket with a higher probability. Furthermore, market

tightness captures the level of congestion in the market, while the meeting technology

accounts for the frictions arising from the decentralized nature of thematching process

which strongly depends on the congestion.

It is important to emphasize that the search friction assumption is a crucial element

of our model, as it introduces non-trivial effects on the analysis.6 Specifically, when

a mass of type-y parents is reallocated from one submarket to another, three key ef-

fects occur: (i) Surplus Effect: This represents the change in total expected surplus of

the market. (ii) Congestion Effect: The change in market tightness in the submarket

where parents are reallocated, leading to a thicker market. (iii) Decongestion Effect:
5We use the language of allocation across submarkets, but it can also be interpreted as the weight

the designer assigns to a specific parent holding a particular license to provide care for one type of child
or another.

6Our paper is closely related to thework of Damiano and Li (2007), which explores how amonopoly
matchmaker sorts agents into exclusive meeting places for random pairwise matching. A key assump-
tion in their framework is that all agents have a constant match probability of one, abstracting from size
effects that could influencematching probabilities based onmarket scale. In contrast, our paper incorpo-
rates market size effects through the search friction assumption, illustrating how market size influences
matching probabilities.
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The change in market tightness in the submarket from which parents are reallocated,

resulting in a thinner market. These effects not only add complexity to the analysis but

also enrich the predictions of our model.

We begin by examining the case with complete information and derive results for

both super- and sub-modular surplus functions. In this section, we focus on the case

of super-modularity, while the discussion of sub-modularity is deferred to the main

body of the paper.

First, we find that it is never optimal for the designer to allocate both of type-y

parents to both submarkets x1 and x2 with strictly positive probability, regardless of

whether the surplus function is supermodular or submodular.7 This result rationalizes

the nested nature of the licenses used in practice, such as the case of the state of Arizona

described above.

Second, we show that super-modularity is neither sufficient nor necessary for the

optimal sorting to exhibit PAM. In our framework, the randomization device estab-

lishes who can match with whom in the market so we use it to define sorting patterns:

a sorting exhibits PAM(NAM) if y2-parents are allocated to submarket x2 with a greater

(smaller) probability than y1-parents are.8 For a frictionless environment with a super-

modular surplus function, it is well known that matching agents in a positive assorta-

tive way maximizes total welfare (Becker, 1973). However, when search frictions are

introduced, we find that this result does not hold because the expected total welfare,

calculated using the meeting technologies in each submarket, is not necessarily super-

modular even if the surplus function is super-modular. By imposing a lower bound on

the fraction of type-x2 children along with super-modularity, we can ensure that PAM

arises in equilibrium. Intuitively, type-y2 parents are more desirable in any submarket,

thus the designer would like to allocate them to a more profitable and thicker submar-

ket x2. Thus, by imposing a lower bound on the share of type-x2 children we ensure

that the market is thick enough.

Third, we find that any transfer scheme that is on the participation constraint for
7In other words, if the optimal randomization rule is interior for type-y parents, then it is a corner

solution for type-y′ parents, where y and y′ are distinct.
8One can equivalently define the sorting pattern through a matching correspondence as standard in

the literature, and say that a sorting exhibits PAM if thematching correspondence is a lattice as in Shimer
and Smith (2000). Since the randomization device provides more information than the correspondence,
our sorting notion is more general: any feasible-unequal allocation of parents in our setting exhibits
either PAM or NAM, but not both, unlike Shimer and Smith (2000).
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each type of parent is optimal, and it does not affect the equilibrium sorting. Therefore,

our framework predicts the same equilibrium sorting regardless of interim or ex-post

participation constraints. This is intuitive as, in equilibrium, given a license, parents

only care about the expected transfer that equalizes the expected cost. Moreover, the

optimal transfersmust account for the child’s attribute, and other features of themarket

such as number of children and number of parents.

In this context, one might imagine that the child welfare agency could screen foster

parents using observable characteristics such as race, marital status, educational level,

employment status, or income. Under this scenario, our complete information analysis

would be sufficient. However, the literature suggests that observable characteristics of

foster parents do not predict the likelihood of fostering higher-needs children, yet the

type of license they hold does.9 This motivates our next analysis relaxing the assump-

tion over the observability of a parent’s attribute.

With private information, our results from complete information carry on, except

for an additional condition for PAM and the need for the designer to provide infor-

mational rents to high-ability parents. Due to the greater expected cost for low-ability

parents to provide care, the expected transfer they receive is greater than what high-

ability parents receive given the first-best menu of licenses. As a result, high-ability

parents have incentives to mimic low-ability parents, thus the designer pays informa-

tion rent to high-ability parents to eliminate such incentives.

Now, to determine the optimal sorting, one needs to know the cost of a parent-child

pairing, as well as the parent distribution, which need not be known under complete

information.10 In this case, a super-modular cost function increases the forces for the

equilibrium sorting to be NAM. The intuition is as follows: a super-modular cost func-

tion means that the difference between the cost for low-ability parents and high-ability

parents of taking care of a child with low-needs is greater than the difference of provid-

ing care for a child with high-needs. Thus, it would be more expensive to shut down a

deviation by high-type parents from high-needs children to low-needs children than a
9Using a sample of 297 foster mothers and a linear multiple regression analyses, Cox et al. (2011)

found no significant association between foster mothers’ observable characteristics—such as race, mar-
ital status, education level, and income—and the likelihood of fostering children with emotional and
behavioral problems.

10Knowing the surplus of a match is sufficient to determine the equilibrium licenses under complete
information, we do not need to disentangle utility and the cost to determine the optimal sorting. This is
not the case in the presence of information friction.
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deviation from low-needs to high-needs children. As a result, the designer would pay

less information rent if high-ability parents are allocated into the submarket of children

with low-needs. Therefore, to ensure that PAM emerges in equilibrium and that par-

ents reveal their type truthfully, we impose sub-modularity on the cost function and

establish a lower bound on the proportion of type-x2 children.

Lastly, we present two significant extensions of our complete information model.

First, we retain the classification of children into high- and low-need categories while

expanding the parental attribute space to a continuum. We find that the nested hierar-

chy of licenses observed in the two-type case no longer holds. Instead, parents are allo-

cated into a single submarket. Moreover, the optimal payment now exclusively consid-

ers the cost of providing care, aligning more closely with practical scenarios. Second,

we conduct comparative statics on the meeting technology to assess the robustness of

our results, considering potential variations in the decentralized search process across

different States within the United States.

Literature Review. The main contribution of this paper is to develop a theoretical

matching model with adverse selection and search frictions to study the optimal menu

of licenses in the US foster care system. Previous studies have analyzed foster care as

a matching market but with different focuses. For instance, Slaugh et al. (2015) as-

sesses the Pennsylvania Adoption Exchange program, recommending improvements

for adoption outcomes, while Robinson-Cortés (2019) uses a confidential dataset to

analyze child placements and evaluate policy interventions. Olberg et al. (2021) intro-

duces a dynamic search and matching model with observable attributes to compare

search processes used by child welfare agencies, and MacDonald (2022) offers an em-

pirical analysis of match transitions, introducing a model with reversible (foster) and

irreversible (adoption) matches. Our paper stands out by incorporating a menu of li-

censes into the analysis, providing a tailoredmodel that addresses key features of foster

care, particularly under conditions of information frictions.

This paper connects to the literature on assortative matching under asymmetric

information, specifically within principal-agent frameworks with adverse selection.

Previous studies, such as Ghatak (1999), Van Tassel (1999), Ghatak (2000), Guttman

(2008) and Altinok (2023), examine sorting patterns in microfinance loan contracts

where heterogeneous borrowers are optimally paired. Similar to this paper, lenders
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in these models can induce PAM or NAM. However, unlike our paper, these studies

focus on single-sided markets, without accounting for search frictions or the presence

of a match coordinator.

Lastly, our paper relates to the search andmatching literature, drawing from frame-

works like those of Menzio and Shi (2010a) and Menzio and Shi (2010b) which intro-

duce submarkets, directed search, and market tightness in labor markets. Shi (2001)

first demonstrated that super-modularity alone is insufficient for PAM under specific

directed search technologies, while Eeckhout and Kircher (2010) identified stronger

complementarity conditions necessary for PAM. Our model differs by incorporating

private information and transfers from the designer to one side of the market. Addi-

tionally, Shimer and Smith (2000) and Smith (2006) explored two-sidedmatchingwith

random search and complete information, showing that PAM fails unless stronger com-

plementarity conditions, like log-supermodularity, are met. Consistent with this liter-

ature, we demonstrate that in the presence of search frictions in foster care, stronger

complementarities are needed to achieve PAM. These conditions become even more

stringent when information frictions are incorporated into the model.

Organization of the Paper. The rest of the paper is organized as follows. Section 2 in-

troduces the model. Section 3 presents the analysis under complete information, and

Section 4 widens the analysis to private information. In Section 5, we provide two rel-

evant extensions. Lastly, Section 6 concludes. Appendix A presents an overview of

foster care in the US, and all omitted proofs are in Appendices B, C, and D. The online

supplement contains proofs and examples omitted from the main text.

2 Model

One side of the market is populated by a continuum of children who differ in an ob-

servable attribute x ∈ X = {x1, x2} where x1 denotes a low-needs child (without a

disability), x2 denotes a high-needs child (with a disability), and x2 > x1.The fraction

of children with low-needs is f(x1) ∈ [0, 1], whereas the fraction with high-needs is

f(x2) = 1 − f(x1). We refer to the set of children with attribute x as submarket x. The

other side of the market is constituted by a continuum of parents who are heteroge-

neous in their ability to provide care for a child. In particular, y1 denotes parents with
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low-ability, y2 denotes parents with high-ability, and y2 > y1.11 The fraction of par-

ents with low-ability is g(y1) ∈ [0, 1], and that with high-ability is g(y2) = 1 − g(y1). A

parent’s ability to provide care is private information.

Matches are formedbetween children andparents on a one-to-one basis.12 There is a

designerwho facilitates thematching process by offering amenu of licenses to parents.

A license L is represented by a pair (λ, τ) where λ : X → [0, 1] is a randomization

device that determines the probability with which a parent is allocated to submarket

x, and τ : X → R represents a transfer between the designer and the parent if the

parent forms a match with child x.13 Throughout the paper, we restrict attention to the

menu of licenses with the following features: (i) allocations are non-wasteful, that is,∑
x∈X λ(x) = 1, and (ii) parents have limited liability, that is, τ(x) ≥ 0 for any x ∈ X .
Figure 1 represents two examples of randomization devices under separate licenses.

Parents holding license L are allocated to submarket x1 with probability 1, and to sub-
market x2 with probability 0. Analogously, parents holding licenseL′ are in submarkets
x1 and x2 with probabilities 1/4 and 3/4, respectively.

Submarket
x1

Submarket
x2

License L

λ(x1) = 1 λ(x2) = 0

Submarket
x1

Submarket
x2

License L′

λ′(x1) =
1
4 λ′(x2) =

3
4

Figure 1: Examples of Randomization Devices

All agents are risk-neutral. The designer maximizes children’s welfare net of trans-

fers. Payoffs for unmatched agents are normalized to zero. When a child x and a

parent y form a match, the child receives payoffs according to a real-valued function

u(x, y), and the parent incurs a cost of providing care according to a real-valued func-

tion c(x, y).14

11Section 5 expands the type space of parents to a continuum.
12According to Gibbs andWildfire (2007), the average occupancy rate is 1.5 children per home, indi-

cating that assuming one-to-one matches aligns with the empirical evidence.
13Alternatively, λ(x) can be interpreted as the probability with which a parent is considered to pro-

vide care for a type-x child.
14The parents’ cost function can be interpreted as a net cost function, which captures the balance

between the benefits of providing care for a child and the associated costs.
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Assumption 1. (a) for all (x, y), u(x, y) ≥ 0, c(x, y) ≥ 0 and u(x, y) − c(x, y) ≥ 0,

(b) u(x, y) is increasing in y, and (c) c(x, y) is increasing in x and decreasing in y.

Assumption 1(a) reflects the following: children are better-off placed with a foster

parent than being unmatched, parents incur a cost when providing care for a child, and

all matches are profitable. Assumption 1(b) states that children prefer high- to low-

ability parents. Finally, Assumption 1(c) implies that parents incur in a smaller cost

whenmatched to low-needs children than to high-needs children, and high-ability par-

ents incur in a smaller cost when providing care than low-ability parents. We present

the timeline in what follows:

1. First, the designer announces and commits to a menu of licenses, one for each type

of parent: {Lk}2k=1 ≡
{{(

λk(xi), τ
k(xi)

)}2

i=1

}2

k=1
.

2. Each parent chooses a license from the menu, where σy ∈ {L1,L2} denotes this deci-

sion. Then, the allocation of parents
{
{λk(xi)}2i=1

}2

k=1
across submarkets is realized.15

3. Next, children and parents in each submarket meet stochastically. The meeting

technology can be described in terms of the parents-to-children ratio (market tight-

ness). The market tightness of each submarket x ∈ X , denoted by θx, is equal to:

θx =
∑2

k=1 h
k(y1)λk(x)+hk(y2)λk(x)

f(x) where hk(y) denotes the endogenous mass of parents

y ∈ {y1, y2} choosing license k. A child x meets a parent according to a technology

πc(θx) where πc : R+ → [0, 1] is a strictly increasing and strictly concave function such

that πc(0) = 0.16,17

4. Finally, when a child x and a parent y meet, a match (x, y) is formed and transfers

take place according to
{
{τ k(xi)}2i=1

}2

k=1
.

Designer’s Problem: The designer aims to maximize children’s welfare while mini-
mizing the transfers. We start by specifying the objective function of the designer. Let
L ≡

{{(
λk(xi), τ

k(xi)
)}2

i=1

}2

k=1
be an arbitrarymenu of licenses. A child x receives util-

15Note, parents selecting a license that features an interior randomization device, have a strictly pos-
itive probability of being matched with either type of child ex-ante, but are matched with only one type
ex-post.

16Similarly, a parent meets a child x with probability πp(θx) where πp : R+ → [0, 1] is a strictly
decreasing and convex function such that πp(θx) = πc(θx)/θx and πp(0) = 1. This relationship ensures
that the probability of a child meeting a parent is consistent with the probability of a parent meeting a
child, by equating the expected number of parents’ meetings to children’s.

17The search friction assumption highlights the decentralizedmatching process in the U.S. foster care
system, where market congestion plays a key role. As market tightness increases, parents are less likely
to find children, while children are more likely to find parents. These frictions also account for the
possibility that congestion may prevent some matches from forming.
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ity u(x, yj)when she matches with a parent yj . Notice that parent yj might hold either
contract, thus the net utility when a child xmatches with parent yj under contract k is
u(x, yj)− τ k(x). Now, conditional on a meeting taking place, the probability that child
x has met a parent yj holding license k is equal to: λk(x)hk(yj)/

2∑
k=1

(
λk(x)

2∑
j=1

hk(yj)

)
. Thus,

the net expected utility in each submarket x, conditional on a meeting taking place, is:

W (x) =

2∑
k=1

[ 2∑
j=1

[
u(x, yj)− τk(x)

]
· λk(x) · hk(yj)

]
2∑

k=1

λk(x) ·
[ 2∑
j=1

hk(yj)
] .

Then, the designer’s problem is:
max{{(

λk(xi),τk(xi)
)}2

i=1

}2

k=1

{ 2∑
i=1

πc
(
θxi

)
W (xi) f(xi)

}
subject to: (1)

[FC] τk(x) ≥ 0 and λk(x) ≥ 0 for all (k, x), and
2∑

i=1

λk(xi) = 1 for all k = 1, 2.

[MT] θx =
1

f(x)
·

2∑
k=1

[
λk(x)

2∑
j=1

hk(yj)
]
, for all x.

[PC]
2∑

i=1

[
τk(xi)− c(xi, yk)

]
λk(xi)π

p(θxi) ≥ 0 , for all k = 1, 2.

[IC]
2∑

i=1

[
τk(xi)− c(xi, yk)

]
λk(xi)π

p(θxi) ≥
2∑

i=1

[
τk

′
(xi)− c(xi, yk)

]
λk′(xi)π

p(θxi), ∀k, k′ = 1, 2

where [FC] are the feasibility constraints specifying restrictions over each λk(x) and

τ k(x). The restrictions [MT] corresponds to the market tightness (parents-to-children

ratio) in each submarket. [PC] are the participation constraints guarantying that each

parent yj receives a higher expected payoff when holding license k = j than when

unmatched. Lastly, [IC] are the incentive compatibility constraints that ensures that

our equilibria are truth-telling.

Sorting Patterns: Now, we define a matching correspondence and establish sorting

patterns using the randomization device of each license
{
λ1(xi), λ

2(xi)
}2

i=1
.

Definition 1. A matching correspondence is a map µ : Y 7→ X such that x ∈ µ(yk) if

and only if λk(x) > 0 . Moreover, if λ2(x2) ≥ λ1(x2) then the sorting exhibits Positive

Assortative Matching (PAM). Analogously, if λ2(x2) ≤ λ1(x2) then the sorting exhibits

Negative Assortative Matching (NAM).

We are interested not only in establishing properties that ensures monotone sorting

but also in characterizing the optimal menu of licenses offered by the designer. As a
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(a) Perfect PAM
y2

y1

x2

x1

µ(y2) = {x2}

µ(y1) = {x1}

(b) Low-type PAM
y2

y1

x2

x1

µ(y2) = {x2}

µ(y1) = {x1, x2}

(c) High-type PAM
y2

y1

x2

x1

µ(y2) = {x1, x2}

µ(y1) = {x1}

Figure 2: Examples of Positive Assortative Matching (PAM)

result, our notion of monotone sorting is as follows: We say high-type PAM (NAM) if

type-y2 parents are allocated into both submarket while type-y1 parents are allocated

only into submarket x1 (x2). Analogously, low- type PAM (NAM) follows.

Figure 2 presents examples illustrating our concept of monotone sorting patterns.

In Panel 2a, y2-parents are allocated into submarket x2 with probability one and y1-

parents are allocated into submarket x2 with probability zero, thus it follows that 1 =

λ2(x2) ≥ λ1(x2) = 0. In Panel 2b, y2-parents are allocated into submarket x2 with

probability one and y1-parents are allocated into both submarkets with strictly posi-

tive probability, thus 1 = λ2(x2) ≥ λ1(x2) ∈ (0, 1). Lastly, in Panel 2c, y2-parents are

allocated into both submarkets with strictly positive probability and y1-parents are al-

located into submarket x2 with probability zero, thus λ2(x2) ∈ (0, 1) ≥ λ1(x2) = 0. Note

that the randomization device in Panel 2c can represent the menu of licenses used in

practice, as outlined in the introduction.18

3 Equilibrium Analysis: Complete Information

In this section, we examine the optimal menu of licenses and analyze sorting patterns
that might arise in equilibrium under complete information. We focus on symmetric
equilibria where same type parents choose the same license. First, note that by in-
corporating the [PC] constraints into the objective function in Equation 1, reduces the
designer’s problem to:

max
{λk(x1),λk(x2)}2k=1

{
2∑

i=1

πp
(
θxi

) [ 2∑
k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]}
(2)

18In this case, parents holding license 1 are restricted to fostering only low-needs children i.e., µ(y1) =
{x1}, while parents with license 2 are eligible to foster both types of children i.e., µ(y2) = {x1, x2},
reflecting the nested structure highlighted previously.
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subject to [FC] and [MT]. Let θ1 and θ2 denote θx1 and θx2 , respectively. In addition,

let S(x, y) ≡ u(x, y) − c(x, y) denote the surplus of a match (x, y) which is increasing

in y by Assumption 1.

Lemma 1. For at least one of the licenses, the optimal randomization rule (allocation) yields a

corner solution.

Please see Appendix B.1 for the proof. Lemma 1 states that it is never optimal for

the designer to allocate both types of y-parents with strictly positive probability into

submarkets x1 and x2. To prove Lemma 1, we start by assuming that the designer allo-

cates both types of y-parents into both submarkets with strictly positive probabilities.

We use the fact that the market tightness derived from any interior
(
λ1(x1), λ

2(x1)
)
can

be achieved by any allocation on a line passing through
(
λ1(x1), λ

2(x1)
)
. Now, since

the meeting probabilities (i.e. market tightness) along that line are constant, we show

that the designer can always increase the welfare by moving along the line towards the

corners. Intuitively, given a submarket, if using one type of parent is more profitable

than using the other, then the designer will allocate the entire population of more prof-

itable parents into that submarket. This result speaks to the optimality of the nested

hierarchy property exhibited in the licenses used in practice. That is, one license al-

locates parents into only one submarket, while the other license allocates parents into

both submarkets.
Now, to characterize the optimal randomization rule we follow a nonstandard tech-

nique due to the presence of corner solutions. We start with an arbitrary interior allo-
cation and examine whether the designer can increase total expected welfare by sim-
ply reallocating parents across submarkets. Formally, for each (x, k), let λk(x) be an
arbitrary-feasible interior probability that generates a total welfare equal to:

W
(
λ1(x1), λ

2(x1)
)
= πp(θ1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
After trembling λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡ − ε1g(y1)

1−g(y1)
, ensuring that the

13



market tightness remains constant, the change in welfare is equal to:

∆W = W
(
λ1(x1) + ε1, λ

2(x1) + ε2
)
−W

(
λ1(x1), λ

2(x1)
)

= ε1 g(y1)
(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])︸ ︷︷ ︸
ZCI(θ1)

Note that, θ2 = 1−f(x1)θ1
1−f(x1)

, thus ZCI(·) can be written as a function of only θ1. From the

change in welfare, it is easy to see that the designer can always increase total welfare by

changing
(
λ1(x1), λ

2(x1)
)
such that themarket tightness remains constant. The optimal

allocation of parents can be characterized by ZCI(θ1), which represents the expected

difference in gains between children x2 and x1 from being matched to a high-ability

parent as opposed to a low-ability parent. Moreover, the sign of ZCI(θ1) determines

the equilibrium sorting. Let θ̄1 be such that ZCI(θ̄1) = 0, then the following result

holds:

Proposition 1. Let θ∗1 be the equilibrium market tightness. (i) If θ∗1 > θ̄1 then the equilibrium

sorting exhibits PAM. (ii) If θ∗1 < θ̄1 then the equilibrium sorting exhibits NAM. (iii) θ∗1 = θ̄1

is never optimal.

Proposition 1 states that if the equilibrium market tightness θ∗1 is such that ZCI(θ∗1)

is positive then PAM arises in equilibrium. To see this, note that ZCI(θ1) is increasing

in θ1, that is, the change in welfare increases as θ1 increases. Thus, for any θ1 > θ1 it

follows thatZCI(θ1) is positive. Therefore, whenZCI(θ1) is positive, we can pick ε1 > 0,

increasing the share of y1-parents allocated in submarket x1 and decreasing the share

of y2-parents allocated in submarket x1, until either λ1(x1) = 1 or λ2(x1) = 0. Either

way, wemove in the direction of PAM. Intuitively, a high θ∗1 translates into a small prob-

ability of a parent meeting a child in submarket x1. Since y2-parents generate a greater

surplus, it would be optimal to minimize the probability with which they remain un-

matched. Thus, the designer chooses to use y2-parents in submarket x2, leading to

PAM. Analogously, NAM follows. See Appendix B.2 for the proof.

Figure 3 illustrates environments capturing Lemma 1 and Proposition 1. In each

box, the x- and y-axis correspond to the probability with which parents holding li-

cense 1 and 2 are allocated into submarket x1, respectively. Thus, every point inside

the box
(
λ1(x1), λ

2(x1)
)
is a feasible allocation of parents. Yet, note that by Lemma 1

only the points at the borders can be an equilibrium. In addition, each black-dashed

14



(a) (b)

Figure 3: Illustration of PAM and NAM given ZCI(θ1)

line corresponds to the values of
(
λ1(x1), λ

2(x1)
)
such that ZCI(θ1) = 0, each blue line

shows the feasible allocations that can be an equilibrium when ZCI(θ1) > 0 (above the

black-dashed line), and each red line shows the feasible allocations that can be an equi-

librium when ZCI(θ1) < 0 (below the black-dashed line). In Panel 3a, the equilibrium

candidates are along the vertical blue line and vertical red line. In the former, alloca-

tions are such that λ2(x2) ≥ λ1(x2) = 0, which corresponds to high-type PAM. In the

latter, allocations are such that 1 = λ1(x2) ≥ λ2(x2), which corresponds to high-type

NAM. Analogously, in Panel 3b, the equilibrium candidates are along the red and the

blue lines.

Now, we are interested in establishing sufficient conditions for PAM and NAM to

arise in equilibrium. Corollary 1 follows directly from Proposition 1.19

Corollary 1. (i) If S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1)

≥ 1
πp(1/f(x2))

holds, then the equilibrium sorting exhibits

PAM. (ii) If S(x1,y2)−S(x1,y1)
S(x2,y2)−S(x2,y1)

≥ 1
πp(1/f(x1))

holds, then the equilibrium sorting exhibits NAM.

For Corollary 1(i), notice that ZCI(θ1) reaches its minimum value at θ1 = 0, imply-

ing that πp(0) = 1 and θ2 =
1

f(x2)
. Thus, we ensure PAM by imposing that the minimum

value of ZCI(θ1) is positive. Observe that (i) requires a super-modular surplus func-

tion since the right-hand side is greater than 1. Moreover, the greater the left-hand

side of (i) is, the stronger the super-modularity is. Thus, strong super-modularity on

the surplus function dominates the adversary effect of the search friction, and becomes

sufficient to induce PAM at the optimum.20Alternatively, one can think of the inequal-
19Corollary 1 ensures that PAM or NAM will arise in equilibrium, but it does not specify whether

we will observe either low-type PAM (NAM), high-type PAM (NAM), or perfect PAM (NAM). Refer to
Appendix B.1 in the online supplement for a detailed characterization.

20By strong super-modularity on the surplus function we mean: [
S(x2, y2) − S(x2, y1)

]
· πp

(
1

f(x2)

)
≥

15



ity (i) as a lower bound over the share of children with high-needs to ensure PAM in

equilibrium. Intuitively, by imposing a lower bound on the share of type-x2 children

we ensure that the market is thick enough for the more desirable type-y2 parents , that

is, the probability of meeting a child in submarket x2 is bounded below. This is in line

with the literature in dynamic search and matching, which imposes stronger comple-

mentarity conditions to ensure that more desirable partners have incentives to wait for

a more desirable partner from the other side of the market.21 Similar arguments and

intuition follows for (ii). The proof is provided in Appendix B.3.
Next, we study the optimal transfer schemes. By fixing the optimal allocations

{λk∗(x1), λ
k∗(x2)}2k=1 from Equation 2, the designer solves the following:

min
{τk(x1),τk(x2)}2k=1

{
2∑

i=1

πp
(
θ∗i
) 2∑

k=1

τk(xi)λ
k∗(xi) g(yk)

}

subject to [FC], [MT], and [PC] from Equation 1. The following proposition states

that the transfer scheme is characterized by [PC]:

Proposition 2. Given an equilibrium allocation of parents {λk∗(x1), λ
k∗(x2)}2k=1, any feasible

transfer schedule for which the participation constraints hold with equality is an equilibrium.

Recall that the optimal allocation of at least one type of parent is a corner solu-

tion, in which case the transfer can be trivially pinned down. As an example, sup-

pose that the equilibrium sorting exhibits perfect PAM, that is, y1-parents are allocated

into submarket x1 with probability one, while y2-parents are allocated into submar-

ket x2 with probability one. Then, the optimal transfer scheme is τ 1∗(x1) = c(x1, y1)

and τ 2∗(x2) = c(x2, y2). That is, parents receive exactly the cost of providing care as is

current practice. See Appendix B.4 for the proof.
In the case of an interior solution for at least one license, the optimal transfer scheme

S(x1, y2) − S(x1, y1)which introduces a constraint that is sensitive to the underlying distribution and the
specific meeting technology. Similarly, the condition of strong sub-modularity on the surplus function
follows.

21Shimer and Smith (2000) and Smith (2006) analyze a dynamic two-sided matching setting with
heterogeneous agents, random search and complete information. The former paper assumes that utility
is fully transferable and establishes as a sufficient condition not only supermodularity on the value of a
match f(x, y) where x and y are the agent’s attributes, but also supermodulariy on log fx and log fxy .
The latter paper assumes that utility is strictly non-transferable and establishes as sufficient conditions
monotonicity and log-supermodularity in f(x, y). In both papers, these conditions ensure that, in the
search process, high-partners do not settle for a low-partner but instead wait for the arrival of a high-
partner. This is in the same spirit as our condition: we are also making sure that the payoffs received
from matching high-types together compensate for the adversary effect of search frictions.
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is not unique. As an example, suppose that the equilibrium sorting exhibits high-
type PAM, that is, y1-parents are allocated into submarket x1 with probability one,
while y2-parents are allocated into both submarkets with strictly positive probability.
Note, this is similar to the example of Arizona discussed in the introduction where
low-needs children can be fostered by parents holding any of the two licenses, and
high-needs children can only be fostered by parents holding one particular license.
Here, the optimal transfer scheme is τ1∗(x1) = c(x1, y1), τ2∗(x1) ≥ 0 and τ2∗(x2) =

c(x2, y2) − [τ2∗(x1) − c(x1, y2)]
πp(θ∗1)λ

2∗(x1)
πp(θ∗2)λ

2∗(x2)
. Now, as in practice, let’s suppose that we in-

clude a restriction imposing that parents who provide care in the same market receive
the same transfer, that is, τ 1∗(x1) = τ 2∗(x1) = c(x1, y1). In this case, the optimal transfer
for parent y2 in submarket x2 would be the following:

τ2∗(x2) = c(x2, y2)−
[
c(x1, y1)− c(x1, y2)

]πp(θ∗1)λ
2∗(x1)

πp(θ∗2)λ
2∗(x2)

Remark 1. A simple transfer schedule suffices; in equilibrium, parents holding different licenses

and caring for the same type of child can receive the same transfer. This follows directly from the nested

nature of the equilibrium allocation, meaning that markets are segregated. In contrast, for a fully interior

allocation, such a simple transfer schedule would not simultaneously satisfy both [PC] conditions. Since

the designer can select any randomization device, it is far from trivial that simple transfers can always

form part of an equilibrium. Furthermore, equilibrium transfers depend on additional market features,

including the number of children, the number of parents, the allocation itself, and the meeting technology.

Example 1. (PAM fails despite a supermodular surplus function) Consider an environ-

ment where f(x1) = 0.8, g(y1) ∈ (0, 1), and the match values are determined by a super-modular

function S(x, y) with the following values: S(x2, y2) = 191, S(x1, y2) = 201, S(x2, y1) = 40 and

S(x1, y1) = 51. Additionally, assume the meeting technology is given by πp(θ) = πc(θ)/θ = 1/1+θ.22

Figure 4: Randomization Device - Complete Information
22Note the following: (i) the share of low-needs children is similar to what is observed in practice

(see Appendix A), and (ii) the condition on primitives mentioned in Corollary 1(i) is not satisfied.
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Figure 4 illustrates the optimal allocation (randomization) of parents into submarket x1 for any

g(y1) ∈ (0, 1). For instance, when g(x1) = 0.5, the optimal allocation is λ1∗(x1) = 0 and λ2∗(x1) = 1,

reflecting perfect-NAM. In fact, the optimal menu exhibits NAM for any value of g(y1) below approxi-

mately 0.8, despite the surplus function S(x, y) being super-modular. Refer to Appendix A in the online

supplement for a detailed analysis of this sample environment. □

4 Equilibrium Analysis: Private Information

In this section, we analyze the case where a parent’s ability is private information by
solving the problem specified in Equation 1. Recall that high-ability parents incur a
smaller cost when providing care for any child than low-ability parents do. Thus, high-
ability parents receive a smaller expected transfer under the optimalmenu specified for
the complete information setting. As a result, high-ability parents have incentives to
mimic low-ability parents in order to receive a greater expected transfer in the presence
of private information. This is true regardless of the sorting pattern/equilibrium allo-
cation. Therefore, [PC] for low-ability parents and [IC] for high-ability parents must
be binding in equilibrium. After incorporating these two constraints into the objective
function in Equation 1, the designer’s problem reduces to:

max
{λk(x1),λk(x2)}2k=1


2∑

i=1

πp
(
θi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]

−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)g(y2)

} (3)

subject to [FC], [MT], and [IC] for low-ability parents.23,24

As one can see, in the objective function, extra terms appear in the second line due to
information frictions . Looking closely, it corresponds to the expected gain that a high-
ability parent obtains by mimicking low-ability parents. Even so, we start by showing

23Notice, [PC] for low-ability parents and [IC] for high-ability parents imply [PC] for high-ability
parents, see proof of Proposition 4 in Appendix C.4.

24For the complete information case, the assumption
∑

x∈X λ(x) = 1 does not play a role in our
results: if we relax it to

∑
x∈X λ(x) ≤ 1, at the optimum this inequality will still be binding. In the

private information setting, the optimum could change if we relax this equality: the designer might
find it optimal to leave some foster parents out of the market to mitigate the incentives of mimicking.
However, we believe that our assumption is reasonable considering that foster care exhibits a shortage of
foster parents, who have to pass a rigorous assessment to be accepted to participate in the market. Thus,
imposing that the system would like to employ all available parents is in line with the child welfare
agencies objectives. In addition, relaxing this assumption would make the problem intractable for the
private information case.
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that Lemma 1 and Proposition 1 presented in the previous section hold under private
information (seeAppendix C.1 andC.2). Following the same arguments aswe did pre-
viously, the term that characterizes the optimal allocation of parents across submarkets
becomes:

ZPI(θ1) = πp(θ2)

([
u(x2, y2)−

c(x2, y2)

g(y1)

]
−
[
u(x2, y1)−

c(x2, y1)

g(y1)

])
− π(θ1)

([
u(x1, y2)−

c(x1, y2)

g(y1)

]
−
[
u(x1, y1)−

c(x1, y1)

g(y1)

])
(4)

Note that ZPI(θ1) is analogous to ZCI(θ1), adjusted by the cost due to information
friction. Recall,

ZCI(θ1) = πp(θ2)
([

u(x2, y2)− c(x2, y2)
]
−
[
u(x2, y1)− c(x2, y1

])
− πp(θ1)

([
u(x1, y2)− c(x1, y2)

]
−
[
u(x1, y1)− c(x1, y1)

])
(5)

A couple of significant insights are worth highlighting. First, if g(y1) = 1 then Equa-

tions 4 and 5 are equivalent. In words, if there is no high-ability parents then there

is no screening problem. Second, c(x,y)
g(y1)

is greater than c(x, y) for all (x, y). That is, in

the private information case, the cost of providing care is amplified by the information

friction. Third, as g(y1) increases, c(x,y)
g(y1)

decreases and approaches to c(x, y). In words,

as the share of low-ability parents increases, the cost of information frictions decreases.

As in Section 3, the sign of ZPI(·) at the equilibrium θ1 determines the equilibrium

sorting (see Appendix C.2). Now, we present sufficient conditions for monotone sort-

ing under private information, analogous to Corollary 1:25

Corollary 2. (i) If
S(x2,y2)−S(x2,y1)+

g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]

S(x1,y2)−S(x1,y1)+
g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]
≥ 1

πp
(

1
f(x2)

) and c(x2,y1)−c(x2,y2)
c(x1,y1)−c(x1,y2)

≥
1

πp
(

1
f(x2)

) hold, then the equilibrium sorting exhibits PAM.

(ii) If
S(x1,y2)−S(x1,y1)+

g(y2)
g(y1)

·[c(x1,y1)−c(x1,y2)]

S(x2,y2)−S(x2,y1)+
g(y2)
g(y1)

·[c(x2,y1)−c(x2,y2)]
≥ 1

πp
(

1
f(x1)

) and c(x1,y1)−c(x1,y2)
c(x2,y1)−c(x2,y2)

≥ 1

πp
(

1
f(x1)

) hold,

then the equilibrium sorting exhibits NAM.

Unlike the complete information case, the surplus function is not sufficient to elicit

the equilibrium sorting pattern under the presence of private information. Here, we

need to take into account the cost of a match as well as the distribution of parents. The

first condition of Corollary 2(i) ensures that the allocation that maximizes the objec-

tive function exhibits PAM, and the second condition guarantees that the allocation is
25See Appendix B.2 in the online supplement for a detailed characterization.
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implementable—incentive compatible. Note, the second condition requires c(x, y) to

be a strong sub-modular function.26 That is, the difference between the cost of pro-

viding care for a child x2 and a child x1 must be greater for low-ability parents than

for high-ability parents. A sub-modular cost function implies that the informational

rents paid to high-ability parents are lower under PAM than NAM. In other words, it

is cheaper for the designer to motivate high-ability parents to report truthfully while

inducing PAM. Thus, such a cost function pushes forces for the equilibrium sorting

towards PAM. Note that, even if the surplus function S(x, y) is sub-modular we may

observe PAM, as in the complete information case. Analogous for 2(ii).

Next, motivated by the fact that the childwelfare agencymay not know the distribu-

tion of parents’ attributes, we establish conditions that do not depend on this primitive:

Corollary 3. (i) If S(x2,y2)−S(x2,y1)
S(x1,y2)−S(x1,y1)

≥ 1
πp(1/f(x2))

and c(x2,y1)−c(x2,y2)
c(x1,y1)−c(x1,y2)

≥ 1
πp(1/f(x2))

hold, then

the equilibrium sorting exhibits PAM.
(ii) If S(x1,y2)−S(x1,y1)

S(x2,y2)−S(x2,y1)
≥ 1

πp(1/f(x1))
and c(x1,y1)−c(x1,y2)

c(x2,y1)−c(x2,y2)
≥ 1

πp(1/f(x1))
hold, then the equilibrium

sorting exhibits NAM.

Corollary 3 follows directly from Corollary 2. In item (i), we require S(x, y) to be a

strong super-modular function as in the complete information case, plus the condition

of strong sub-modularity in c(x, y) to ensure incentive-compatibility. Thus, we add an

extra condition to the complete information result.

It is now important to examine the problem under more relaxed conditions, specif-

ically when the conditions outlined in Corollaries 2 and 3 are not satisfied.

Remark 2. The incentive-compatibility conditions are satisfied if and only if:(
λ2(x2)− λ1(x2)

)(
πp(θ2)

[
c(x2, y1)− c(x2, y2

]
− πp(θ1)

[
c(x1, y1)− c(x1, y2)

])︸ ︷︷ ︸
C(θ1)

≥ 0

where C(·) represents the expected cost difference between caring for child x2 and child x1 when com-

paring a high-ability parent to a low-ability parent. Note that, C(θ1) increases with θ1. Furthermore,

λ2(x2)− λ1(x2) is non-negative if the given allocation exhibits PAM.

Next, we provide a partial characterization. LetC(θ′1) = 0 and ZPI(θ′′1) = 0 for some

θ′1 and θ′′1 . Thus, C(θ1) > 0 if and only if θ1 > θ′1, and ZPI(θ1) > 0 if and only if θ1 > θ′′1 .
26By strong sub-modularity on the cost function we mean: [c(x2, y1) − c(x2, y2)

]
· πp

(
1

f(x2)

)
≥ c(x1, y1) −

c(x1, y2) which introduces a constraint that is sensitive to the underlying distribution and the specific
meeting technology. Similarly, the condition of strong super-modularity on the cost function follows.
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Proposition 3. Let θ∗∗1 denote the equilibrium market tightness derived from the solution

{λk∗∗(x1)}2k=1 in Equation 3. (i) If θ∗∗1 ≥ max
{
θ′1, θ

′′
1

}
then {λk∗∗(x1)}2k=1 is a solution

to Equation 1 which exhibits PAM. (ii) If θ∗∗1 ≤ min
{
θ′1, θ

′′
1

}
then {λk∗∗(x1)}2k=1 is a solu-

tion to Equation 1 which exhibits NAM. (iii)Otherwise, {λk∗∗(x1)}2k=1 and the corresponding

induced θ∗∗1 do not solve Equation 1.

Proposition 3 is analogous to Proposition 1. It essentially states that the solution

to the relaxed problem forms an equilibrium for the more constrained problem if the

resulting market tightness in submarket-x1 is either sufficiently high or low, relative to

specific thresholds determined by the meeting technology, surplus, and cost functions:

max
{
θ′1, θ

′′
1

}
and min

{
θ′1, θ

′′
1

}
.

Next, we analyze the equilibrium transfers under private information. By fixing the

optimal allocations {λk∗∗(x1), λ
k∗∗(x2)}2k=1 from Equation 3, the designer solves the fol-

lowing: min{τk(x1),τk(x2)}2k=1

{∑2
i=1 π

p
(
θ∗∗i

) ∑2
k=1 τ

k(xi)λ
k∗∗(xi) g(yk)

}
subject to [FC],

[PC] and [IC] from Equation 1. Here, the [PC] for low-ability parents, and the [IC]

for high-ability parents determine the equilibrium transfer scheme. Formally:

Proposition 4. Fix an equilibrium allocation of parents {λk∗∗(x1), λ
k∗∗(x2)}2k=1. Any feasible

transfer schedule for which the PC for y1-type parents as well as the IC for y2-type parents are

satisfied by equality is an equilibrium, if one of the following hold: (i) λ2∗∗(x2) ≥ λ1∗∗(x2) and

c(x, y) is strong sub-modular, or (ii) λ1∗∗(x2) ≥ λ2∗∗(x2) and c(x, y) is strong super-modular

Note that conditions in Corollaries 2 and 3 are also sufficient for Proposition 4. In

particular, Corollary 2(i) or Corollary 3(i) ensure two things: (1) the cost function

c(x, y) is strong sub-modular, and (2) the randomization device exhibits PAM, that is,

λ2∗∗(x2) ≥ λ1∗∗(x2). Thus, conditions in Corollaries 2 or 3 satisfy the conditions in

Proposition 4(i). Analogous, for item (ii). See Appendix C.4 for the proof.

When the equilibrium sorting exhibits perfect PAM, the optimal transfer scheme

is as follows: τ 1∗∗(x1) = c(x1, y1) and τ 2∗∗(x2) = c(x2, y2) + [c(x1, y1) − c(x1, y2)]
πp(θ∗∗1 )

πp(θ∗∗2 )
.

That is, y1-parents receive exactly the cost of providing care, while y2-parents receive

the cost of providing care plus informational rents. Thus, it is no longer optimal to

transfer parents just the cost of providing care; screening requires to compensate high-

ability parents to disclose their type truthfully.
Similarly, let’s suppose that the equilibrium sorting exhibits high-type PAM. In

this case, the optimal transfers are as follows: τ1∗∗(x1) = c(x1, y1), τ2∗∗(x1) ≥ 0 and
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τ2∗∗(x2) = c(x2, y2) − [τ2∗∗(x1) − c(x1, y2)]
πp(θ∗∗1 )λ2∗∗(x1)
πp(θ∗∗2 )λ2∗∗(x2)

+ [c(x1, y1) − c(x1, y2)]
πp(θ∗∗1 )

πp(θ∗∗2 )λ2∗∗(x2)
.

For instance, suppose that parents who provide care in the same market must receive
the same transfer, that is, τ 1∗∗(x1) = τ 2∗∗(x1) = c(x1, y1). The optimal transfer for parent
y2 in submarket x2, τ 2∗∗(x2)would be the following:

c(x2, y2)−
[
c(x1, y1)− c(x1, y2)

]πp(θ∗∗1 )λ2∗∗(x1)

πp(θ∗∗2 )λ2∗∗(x2)
+ [c(x1, y1)− c(x1, y2)]

πp(θ∗∗1 )

πp(θ∗∗2 )λ2∗∗(x2)

As one can observe, compared to the complete information setting, a positive extra
term appears in the transfer for high-ability parents who provide care in submarket x2.

This is to incentivize high-ability parents to reveal their true types. We conclude this

section with Example 1 by incorporating private information.

Example 2. (PAM fails despite a supermodular surplus function)Recall the environment

in Example 1: f(x1) = 0.8, g(y1) ∈ (0, 1), S(x2, y2) = 191, S(x1, y2) = 201, S(x2, y1) =

40, S(x1, y1) = 51, and that πp(θ) = 1/1+θ. Moreover suppose that the cost function is

super-modular with the following values: c(x2, y2) = 15, c(x1, y2) = 1, c(x2, y1) = 20 and

c(x1, y1) = 15.27

Figure 5: Randomization Device - Private & Complete Information

Figure 5 shows that the optimal randomization devices for both complete and private infor-

mation scenarios are remarkably similar. Specifically, λ1(x1) and λ2(x2) closely resemble λ̂1(x1)

and λ̂2(x2), respectively.28 However, when g(y1) is approximately in (0.8, 0.9), the equilibrium

sorting pattern is PAM under complete information, whereas it is NAM with private informa-

tion. To see the intuition, consider an equilibrium menu of licenses that implements perfect

sorting under the complete information, such that τ k(x) = c(x, yk). If the menu implements
27Notice, the cost function here guarantees the existence of a separatingmenu of licenses underNAM,

whereas any equilibrium exhibiting PAM does not screen parents.
28This similarity arises due to the values of the surplus and cost functions. If the values of the cost

functionwere to increase, it would lead to a notable disparity in the optimal randomization rule between
the complete and private information settings.
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NAM(PAM), then type-y2 parents pretend to be type-y1 to be able to match with type-x2(type-

x1) instead of type-x1(type-x2) children. The misreport under NAM allows parent type-y2
parent to (ex-post) gain as much as τ 1(x2)− c(x2, y2) = 5 whereas the misreport under PAM

does τ 1(x1) − c(x1, y2) = 14. That is, type-y2 parents have stronger incentives to misreport if

the equilibrium sorting is PAM than when it is NAM. Thus, it is cheaper for the designer to

switch the equilibrium sorting from PAM to NAM for the (roughly) specified region of g(y1).

Notice, this intuition is in line with the counterpart of Corollary 2(i). Refer to Appendix A in

the online supplement for an in-depth analysis. □

5 Discussions and Extensions

In this section, we extend our complete information model in two key directions and

present the corresponding findings. First, we maintain the classification of children

into high- and low-need categories while broadening the parental attribute space to a

continuum. Second, we analyze the sensitivity of our results by conducting compara-

tive statics on the meeting technology.

5.1 Continuous type of Parents

Motivated by the fact that a parents ability to provide care might be a continuous vari-

able, we now assume that parents differ in y ∈ |y, ȳ| ≡ Y ⊂ R+, which follows a con-

tinuous and differentiable cumulative distribution function (CDF) G(x)with a strictly

positive probability density function (PDF) g(x). We uphold our regularity conditions:

S(x, y) is increasing in y, while c(x, y) is increasing in x and decreasing in y.
Now, a license for type-y parent isL(y) ≡

{(
λ(xi, y), τ(xi, y)

)}2

i=1
. Thus, conditional

on a meeting taking place, the probability that child x has met a parent y is equal to
λ(x,y)g(y)/

y∫
y
λ(x,y)g(y) dy. Thus, the net expected utility in each submarket x, conditional on

a meeting, is W (x) =

( y∫
y

[
u(x,y)−τ(x,y)

]
λ(x,y)g(y) dy

)
/
( y∫

y

λ(x,y)g(y) dy

)
. Then, the designer’s

problem is:
max({(

λ(xi,y),τ(xi,y)
)}2

i=1

)
y∈Y

{ 2∑
i=1

πc
(
θi
)
W (xi) f(xi)

}
(6)
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subject to [FC] and [PC] defined as in earlier, and [MT]: θi = 1/f(x) ·
y∫
y
λ(x, y)g(y) dy, for

i = 1, 2. After incorporating the [PC] equations into the objective function, and using
the [MT] alongwith the relationship πc(θ)/θ = πp(θ), the designer’s problem reduces to:

max({
λ(xi,y)

}2

i=1

)
y∈Y

{ 2∑
i=1

πp
(
θi
)
·

y∫
y

S(xi, y)λ(xi, y)g(y) dy
}

(7)

It is easy to see that the randomization device λ(x, y) is independent ofwhether interim

or ex-post participation constraints are satisfied (see Corollary B.1). Furthermore, the

segregation result from the two-type case (see Lemma 1) extends to the current envi-

ronment, albeit with a caveat:

Lemma 2. Any interior randomization λ(x, y) is not optimal.

Please see Appendix D.1.1 for the proof. Lemma 2 states that for each parent y, the
randomization device will take a value of either zero or one. Notably, unlike in the
complete information case, a parent will foster only one type of child here. Therefore,
the nested structure of licenses described in the introduction does not appear in this
case. The proof closely follows the two-type case. Beginwith an interior randomization
λ(x1, y) ∈ (0, 1) for any y such that λ(x2, y) = 1 − λ(x1, y) by the [FC]. Next, define a
monotone function ε : Y → (0, 1) such that

∫
ε(y)g(y) dy = 0. Apply a perturbation to

the initial pair λ(y) =
(
λ(x1, y), λ(x2, y)

)
to obtain a new allocation λ̃(y) ≡

(
λ(x1, y) −

ε(y), λ(x2, y) + ε(y)
)
ensuring that market tightness remains unchanged under both

λ(y) and λ̃(y). The change in welfare resulting from this perturbation is:

∆W =

y∫
y

[
πp(θ2)S(x2, y)− πp(θ1)S(x1, y)

]︸ ︷︷ ︸
ẐCI(y|θ)

ε(y)g(y) dy,

where θ = (θ1, θ2). Then, we construct the perturbation function ε(y) such that it is

monotone increasing over regions where ẐCI(y|θ) is increasing andmonotone decreas-

ing over regions where ẐCI(y|θ) is decreasing. This yields a strictly positive change in

welfare, which finishes the proof.

Definition 2. If λ(x2, y) is non-decreasing (non-increasing) in y, then the sorting exhibits

PAM (NAM).

Proposition 5 states that, given an equilibriummarket tightness (θ∗1, θ∗2), there exists

a threshold parent level such that all parents below this threshold are allocated to one
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submarket, while all parents above it are allocated to the other submarket. This result

reflects a complete segregation of the market.

Proposition 5. Let (θ∗1, θ∗2) be an equilibrium market tightness.

(i) If πp(θ∗)S(x, y) is super-modular, then the equilibrium sorting exhibits PAM. That is,

λ∗(x2, y) = 0 for all y ≤ ŷPAM and λ∗(x2, y) = 1 for all y > ŷPAM where θ∗1 =

G(ŷPAM )/1−f(x2) and θ∗2 = 1−G(ŷPAM )/f(x2).

(ii) If πp(θ∗)S(x, y) is sub-modular, then the equilibrium sorting exhibits NAM. That is,

λ∗(x2, y) = 1 for all y ≤ ŷNAM and λ∗(x2, y) = 0 for all y > ŷNAM where θ∗1 =

1−G(ŷNAM )/1−f(x2) and θ∗2 = G(ŷNAM )/f(x2).

In the following, we establish sufficient conditions for monotone sorting. To this

end, let S(x, y) be continuous and differentiable over Y , and let Sy(x, ·) denote the par-

tial derivative of S(x, y)with respect to y.

Corollary 4. need a blank line here

(i) If Sy(x2,ỳ)/Sy(x1,ỳ) ≥ 1
πp(1/f(x2))

where ỳ := argmin
y∈Y

πp
(
1/1−f(x1)

)
Sy(x2, y)− Sy(x1, y), then

the equilibrium sorting exhibits PAM. That is, λ∗(x2, y) = 0 for all y ≤ ŷPAM and

λ∗(x2, y) = 1 for all y > ŷPAM with:

ŷPAM := argmax
ŷ∈Y

πp
(
G(ŷ)/f(x1)

) ŷ∫
y

S(x1, y)g(y)dy + πp
(
1−G(ŷ)/1−f(x1)

) y∫
ŷ

S(x2, y)g(y)dy.

(ii) If Sy(x1,ý)/Sy(x2,ý) ≥ 1
πp(1/f(x1))

where ý := argmax
y∈Y

Sy(x2, y) − πp
(
1/f(x1)

)
Sy(x1, y), then

the equilibrium sorting exhibits NAM. That is, λ∗(x2, y) = 1 for all y ≤ ŷNAM and

λ∗(x2, y) = 0 for all y > ŷNAM with:

ŷNAM := argmax
ŷ∈Y

πp
(
1−G(ŷ)/f(x1)

) y∫
ŷ

S(x1, y)g(y)dy + πp
(
G(ŷ)/1−f(x1)

) ŷ∫
y

S(x2, y)g(y)dy.

Corollary 4 (i) implies that S(x, y) is supermodular. This suggests that our con-

dition is slightly stronger than the standard supermodularity of the surplus function

required to ensure PAM, as in the two-type case. Analogously, a sufficient condition—

Corollary 4 (ii)—for NAM follows. Furthermore, these conditions result in a segrega-

tion of the market, with one key distinction to the two-type case: no parent is allocated

across both submarkets. Specifically, a threshold type-y parent emerges, dividing the

type space into two distinct partitions, each allocated to a separate submarket. This
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contrasts with environments involving a finite number of parent types. An imme-

diate implication is that if the conditions for monotone sorting are satisfied, the de-

signer’s problem simplifies to selecting the threshold type-y parent that partitions the

type space. This choice is effectively equivalent to determining the market tightness.

Remark 3. The model and analysis can be readily extended to accommodate an arbitrary envi-
ronment with X = {x1, x2, . . . , xn} where n ≥ 2 while y ∼ Y with a nonzero PDF g(·). In
such a setting, whenever λ(x, y) ∈ (0, 1) for some x ∈ {xi, xj} over some non-zero measure
Y ′ ⊆ Y , a similar perturbation—between submarkets i and j over the type-space Y ′ without
altering MT at each submarket—yields the following change in the welfare:

∆W =

∫
y∈Y ′

[
πp(θxi)S(xi, y)− πp(θxj )S(xj , y)

]
ε(y)g(y)dy.

Thus, the steps outlined above can be easily followed to replicate the analysis and derive charac-

terizations analogous to Proposition 5 as well as Corollary 4.

Lastly, the transfers can be easily determined by the [PC] since parents are allo-

cated to exactly one submarket. Specifically, τ ∗(xi, y) = c(xi, y) if λ∗(xi, y) = 1 for all

(xi, y). Thus, in this case, we observe that paying parents exactly the cost of providing

care, as mentioned in the Arizona example, constitutes an equilibrium. However, it is

important to note that this outcome is optimal only when licenses are not nested.

5.2 Improvement in the Meeting Technology

In this section, we analyze the role of meeting technology in modeling search frictions

within the allocation process. Specifically, we investigate how changes in search tech-

nology—whether advancements or setbacks—affect our sorting results. This analysis

is motivated by the observed differences in the effectiveness of child welfare agencies

in matching children with suitable foster families.

Formally, we define what constitutes an improvement in search technology, con-

centrating, without loss of generality, on its application to parents. Recall that πp(·) is a

strictly decreasing and strictly convex function bounded by πp(0) = 1 and lim
θ→∞

πp(θ) =

0.29 LetΠp be the set of all such bounded, strictly decreasing, and strictly convex func-
29Moreover, recall that πc(θ)/θ ≡ πp(θ). And thus, for any other meeting technology for parents π̃p(θ),

it has to be the case that π̃p(θ) · θ = π̃c(θ) is strictly increasing and concave with the following bounds
π̃c(0) = 0 and lim

θ→∞
π̃c(θ) = 1.
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tions. For any πp, π̂p ∈ Πp, we say that π̂p is an improved technology compared to πp if
∂π̂p(θ)/∂θ > ∂πp(θ)/∂θ for any finite θ. Note, this also implies π̂p(θ) > πp(θ). If π̂p is an im-

proved technology of πp, we denote πp▷ π̂p. Now, the following partially characterizes

the equilibrium sorting as meeting technology improves:

Proposition 6. Suppose S(x, y) is super-modular (sub-modular). If the equilibrium sorting

is PAM (NAM) with some meeting technology πp, then it remains PAM (NAM) for any π̂p

such that πp ▷ π̂p.

6 Concluding Remarks

This paper analyzes the foster care system in the US as a two-sided matching market

wherein one side consists of children who are heterogeneous in level of care needed,

and the other side consists of parents who differ in their ability to take care of a child.

We solve for the optimalmenu of licenseswhich specifies an allocation of parents across

submarkets of children as well as the corresponding transfers, under the presence of

search and information frictions.

With a discrete type space, the paper establishes two key results that hold regardless

of the information frictions: (i) it is not optimal to mix multiple types of parents into

multiple submarkets of children, and (ii) super-modularity and sub-modularity of the

surplus of a match are neither sufficient nor necessary conditions for the optimal sort-

ing to exhibit PAM and NAM, respectively. The former rationalizes the nested nature

of the menu of licenses offered by various states in the US. The latter has implications

on the optimal allocation of parents: even if the surplus shows complementarity (sub-

stitutability) in child and parent’s attributes, allocating parents into submarkets such

that the sorting exhibits PAM (NAM) is not necessarily optimal due to search frictions.

We alsomake inferences once information friction is introduced: as the share of low-

type parents increases, the allocation of parents approaches to the first-best (complete

information). Because, high-type parents mimic the low-type ones to receive a greater

expected transfer. As a result, the designer pays information rents to high-type parents

to overcome such incentives. The smaller the share of high-type parents, the less the

designer cares about such mimicking incentives. However, if the proportion of high-

type parents is big enough, then not only the allocation diverges from the first-best, but
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also the optimal sorting may reverse.

Lastly, we analyze the sensitivity of our results by introducing a continuous at-

tribute space for parents and briefly discuss the implications of expanding the discrete

attribute space for children.
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A Appendix: Foster Care in the US
A.1 Overview

During 2020 Federal Fiscal Year (FFY),30 childwelfare agencies across the United States

received more than 3.9 million allegations of suspected child abuse or neglect (equiv-

alent to approximately 7.1 million children). Out of these children, 9 percent were

removed from their homes and placed into foster care. According to Rosinsky et al.

(2023), the national spending on childwelfare in 2020 FFYwas approximatelyUS$34.1,

out of which US$15.2 billion was federally funded, and the remaining was financed

directly by States. Furthermore, 45 percent of the national spending was destined to

foster care placement expenditure, including payments to foster parents.

Using the Foster Care Files from AFCARS,31 we observed that in 2020 FFY there

were 631,254 children in foster care. On average, these children were almost 7 years

old, 49 percent were females, 69 percent were white, and 24 percent were clinically

diagnosed with a disability.32 Thus, based on the disability variable, we can infer that

at least 24 percent of children in the US foster care are special needs.33 During their stay

in foster care, 77 percent of these children were placed with foster parents, 9 percent

were placed in institutional care, and the remaining had other arrangements. Foster

parents caring for children with and without a disability received an average payment

of US$1,423 and US$ 2,704 per month, respectively. In this data set, foster parents are

not identifiable; only family structure, race and year of birth are reported. Thus, since

we do not know how many times a foster parent might appear, we can not provide

reliable statistics.

Most of the information regarding foster parents comes from Census data and sur-

veys. Using Census data from 2000, O’Hare (2008) finds that households with foster

children, compared to all other householdswith children, are: less likely to bemarried-

couples, less likely to have amember who finished college, less likely to work full-time,

more likely to be low income families, and more likely to receive public assistance in-
30October 1, 2019 to September 30, 2020.
31AFCARS is a federally mandated data collection system. All fifty US states and the District of

Columbia are required to collect data on all children in foster care and all children adopted from foster
care.

32A disability includes conditions such as blindness, glaucoma, arthritis, multiple sclerosis, down
syndrome, personality disorder, attention deficit, and anxiety disorder, among others.

33In the majority of the cases, once a child enters the foster care system, a mandatory medical evalu-
ation is performed, therefore we assume that the level of care needed is common knowledge.
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come. Now, after conducting a survey of 297 foster mothers, Cox et al. (2011) finds that

the average age is 44.1 years old, 88.2 percent are European-American, 75.1 percent are

married, 28.9 percent have a bachelor’s degree, 33 percent works full-time, and 50.1

percent have an annual family income less than USD$50,000.

A.2 Matching Process

Foster care is overseen and managed at the state level by Child Protective Services

(CPS). Upon receiving an allegation regarding a child’s well-being, CPS assigns a so-

cial worker to the case, starting an investigation. If sufficient evidence supporting an

accusation is identified, the case is presented to a juvenile or family court. The judge

then determines whether the child should be removed from their birth family home

and placed in foster care.

In many states, decisions regarding the placement of children are made by social

workers. Acting on behalf of the child, the social worker (a) searches for and contacts

foster parents, (b) facilitates a meeting between the foster parent and child to assess

compatibility, and (c) decides on the placement of the child. In this search process, the

social worker can only consider fosters parent who are certified, through a license, to

provide care for the child.

Foster parents must obtain a license to provide care for children. The licensing pro-

cess involves a home study andmandatory training. The home study ensures the foster

parent’s residence is clean, in good condition, and free from hazards. Initial training,

ranging from 15 to 30 hours, covers topics such as agency policies, foster parent roles

and responsibilities, and behavior management. The menu of licenses varies across

states (for more details see DeVooght and Blazey (2013)). As we mentioned in the in-

troduction, children are grouped by the level of care needed, and transfers vary across

groups. These transfers follow the principle that foster parents caring for childrenwith

high-needs receive greater transfers.

B Appendix: Analysis of Complete Information

In this section, we prove the results for the complete information case. For each par-
ent yk with k = {1, 2}, the designer offers a licenses (λk, τ k). The designer solves the
following problem:
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max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{ 2∑
i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)
}

subject to [FC]s, [MT]s, and [PC]s defined in the optimization problem 1. Recall that
πp(θ) = πc(θ)/θ. Thus, the objective function can be written as:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{ 2∑
i=1

πp
(
θi
) 2∑

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)

}

Notice from the [PC]s that the expected total transfer must be equal to the expected
total cost for each license:

∑2
i=1 τ

k(xi)λ
k(xi)π

p(θi) =
∑2

i=1 c(xi, yk)λ
k(xi)π

p(θi). Thus
replacing this into the rearranged objective function reduces the designer’s problem to
the following:

max{
λk(x1),λk(x2)

}2

k=1

{ 2∑
i=1

πp
(
θi
) 2∑

k=1

[
u(xi, yk)− c(xi, yk)

]
λk(xi)g(yk)

}
s.t. [FC]s and [MT]s.

Corollary B.1. In the first best, the randomization device
{
λk(x1), λ

k(x2)
}2

k=1
is independent

of whether we consider interim or ex-post participation constraints.

B.1 Proof of Lemma 1

For each (x, k), let λk(x) be an arbitrary-feasible interior probability that generates a

total welfare equal to:

W
(
λ1(x1), λ

2(x1)
)
= πp(θ1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
, where

θ1 =
g(y1) λ

1(x1) +
(
1− g(y1)

)
λ2(x1)

f(x1)
and θ2 =

g(y1)
(
1− λ1(x1)

)
+

(
1− g(y1)

)(
1− λ2(x1)

)
1− f(x1)

(B.1)

After trembling λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡ −ε1g(y1)/1−g(y1), ensuring

that the market tightness in each market remains constant, the new total welfare is:

W
(
λ1(x1)+ε1, λ

2(x1)+ε2
)
= πp(θ1)·

[
g(y1) λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε1 g(y1)

(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])
Thus, the change in welfare is equal to:
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∆W = W
(
λ1(x1) + ε1, λ

2(x1) + ε2
)
−W

(
λ1(x1), λ

2(x1)
)

= ε1 g(y1)
(
πp(θ2)

[
S(x2, y2)− S(x2, y1)

]
− πp(θ1)

[
S(x1, y2)− S(x1, y1)

])︸ ︷︷ ︸
ZCI(θ1)

where θ1 and θ2 are defined as in Equation B.1. Note that θ2 = 1−f(x1)θ1/1−f(x1), thus

ZCI can be written as a function of only θ1. It is easy to see that ZCI(θ1) is strictly

increasing in θ1. Therefore, ZCI(θmax
1 ) ≥ ZCI(θ1) ≥ ZCI(0) for any θ1 ∈ [0, θmax

1 ] where

θmax
1 = 1/f(x1). Now, we analyze three cases:

1. Suppose ZCI(θ1) > 0. Then, pick ε1 > 0 with ε2 = −ε1g(y1)/1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 1 or λ̂2(x1) ≡ λ2(x1) + ε2 = 0. In the former case, λ̂1(x2) = 0 and

λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and λ̂2(x2) = 1. In both cases, the

definition of PAM is satisfied.

2. Suppose ZCI(θ1) < 0. Then, pick ε1 < 0 with ε2 = −ε1g(y1)/1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 0 or λ̂2(x1) ≡ λ2(x1) + ε2 = 1. In the former case, λ̂1(x2) = 1 and

λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and λ̂2(x2) = 0. In both cases, the

definition of NAM is satisfied.
3. Suppose ZCI(θ1) = 0. We show that an interior randomization device can not be an
equilibrium. To see this, first tremble λ1(x1) by ε1, and calculate welfare:

W
(
λ1(x1) + ε1, λ

2(x1)
)
= πp(θ̂1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ̂2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε1g(y1)

[
πp(θ̂1) S(x1, y1)− πp(θ̂2) S(x2, y1)

]
where θ̂1 = θ1 + ε1g(y1)/f(x1), θ̂2 = θ2 − ε1g(y1)/1−f(x1), and θ1, θ2 are defined as in Equa-

tion B.1. Now, let’s tremble λ2(x1) by ε2, and calculate welfare:

W (λ2(x1), λ
2(x1) + ε2) = πp(θ̃1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ̃2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
+ ε2

(
1− g(y1)

)[
πp(θ̃1) S(x1, y2)− πp(θ̃2) S(x2, y2)

]
where θ̃1 = θ1 + ε2(1−g(y1))/f(x1), θ̃2 = θ2 − ε2(1−g(y1))/1−f(x1), and θ1, θ2 are defined as in

Equation B.1. For any small ε1 with ε2 ≡ ε1g(y1)/1−g(y1), it follows that θ̂1 = θ̃1 and θ̂2 = θ̃2.

Pick such ε2. Then, increasing λ1(x1) is marginally more profitable than increasing

λ2(x1) if and only if
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πp(θ̂2) ·
[
S(x2, y2)− S(x2, y1)

]
− πp(θ̂1) ·

[
S(x1, y2)− S(x1, y1)

]︸ ︷︷ ︸
ZCI(θ̂1)

≥ 0

Since ZCI(θ̂1) > ZCI(θ1) = 0, then the inequality holds. Therefore, at least one of the
partial derivatives ofW at

(
λ1(x1), λ

2(x1)
)
is non-zero, meaning that

(
λ1(x1), λ

2(x1)
)
at

ZCI(θ1) = 0 is not an equilibrium. This finishes the proof.

B.2 Proof of Proposition 1

By assumption S(x, y) is increasing in y, thus ZCI(θ1) is increasing in θ1. Therefore,

items (i) to (iii) from the previous proof of Lemma 1 apply here.

B.3 Proof of Corollary 1

Notice that, ZCI(θ1) is increasing in θ1 reaching its minimum value at θ1 = 0, and when

θ1 = 0 it follows that πp(0) = 1 and θ2 = 1/1−f(x1). Therefore, from Proposition 1, we

can ensure PAM by imposing that the following inequality must hold:

πp
(
1/1−f(x1)

)
·
[
S(x2, y2)− S(x2, y1)

]
−
[
S(x1, y2)− S(x1, y1)

]
≥ 0

Notice, ZCI(θ1) reaches its maximum value at θ1 = 1/f(x1), and thus the condition for

NAM also simply follows.

B.4 Proof of Proposition 2

The designer solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{ 2∑
i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)
}

subject to [FC], [MT], and [PC]. We show that at the optimum, the participation con-

straints hold with equality. By contradiction, suppose that for some license k, the [PC]

holds with strict inequality:
∑2

i=1 τ
k(xi)λ

k(xi)π
p(θi) >

∑2
i=1 c(xi, yk)λ

k(xi)π
p(θi) Then,

the designer can decrease τ k(x1) and τ k(x2) by a small ε > 0 satisfying the constraint

while increasing the objective function. A contradiction. Therefore, the optimal trans-

fers can be pinned-down by the [PC] which hold with equality.
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C Appendix: Analysis of Private Information

First, it is useful to understand who has incentives to mimic whom under the first best

menu of licenses. Recall the incentive compatibility constraint [IC] for k ̸= k′ = 1, 2:∑2
i=1

[
τ k(xi)−c(xi, yk)

]
λk(xi)π

p(θi) ≥
∑2

i=1

[
τ k

′
(xi)−c(xi, yk)

]
λk′(xi)π

p(θi) and the par-

ticipation constraint [PC] for k = 1, 2:
∑2

i=1

[
τ k(xi) − c(xi, yk)

]
λk(xi)π

p(θi) ≥ 0. In the

complete information case, [PC]s holds with equality. Now, plugging [PC](k) and

[PC](k′) into [IC](k) yields the following inequality:

0 ≥
[
c(x1, yk′)− c(x1, yk)

]
λk′(x1)π

p(θ1) +
[
c(x2, yk′)− c(x2, yk)

]
λk′(x2)π

p(θ2)

Since c(x, y) is decreasing in y, the inequality holds for k = 1 but not for k = 2. Thus,

under the first best, type-y2 parents have incentives to mimic type-y1 parents. Notice

the [IC] for high-ability and the [PC] for low-ability parents holdwith equality in equi-

librium (see Proof of Proposition 4). Thus, plugging objects from [PC1] into [IC2]:

τ 2(x1)λ
2(x1)π

p(θ1)+τ 2(x2)λ
2(x2)π

p(θ2) = c(x1, y2)λ
2(x1)π

p(θ1)+c(x2, y2)λ
2(x2)π

p(θ2)+[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1) +
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)

Now, replacing the restrictions into the objective function, the designer solves:

max
{λk(x1),λk(x2)}2k=1


2∑

i=1

πp
(
θi
) [ 2∑

k=1

(
u(xi, yk)− c(xi, yk)︸ ︷︷ ︸

S(x,y)

)
λk(xi) g(yk)

]

−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)− c(x2, y2)

]
λ1(x2)π

p(θ2)g(y2)
}

subject to [FC], [MT], and some additional constraints [AC] where
c(x2, y2)− c(x2, y1)

c(x1, y2)− c(x1, y1)
≥ 1

πp (1/f(x2))
if λ2(x2) > λ1(x2) and c(x1, y2)− c(x1, y1)

c(x2, y2)− c(x2, y1)
≥ 1

πp (1/f(x1))
if λ2(x2) < λ1(x2) (C.1)

This additional constraint [AC] ensures that the [IC] for low-ability parents is satisfied

when the [IC] for high ability parents holds (see Proof of Proposition 4). Since the

objective function is independent of the transfers after incorporating the participation

constraints, the following is immediate:

Corollary C.1. With private information, the randomization device
{
λk(x1), λ

k(x2)
}2

k=1
is

independent of whether interim or ex-post participation constraints are implemented.
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C.1 Proof of Lemma 1 under Private Information

We can establish Lemma 1 for the private information case.

Lemma C.1. In the private information setting, for at least one of the licenses, the optimal

randomization rule yields a corner solution.

For each (x, k), let λk(x1) ∈ (0, 1) be an arbitrary-feasible interior probability that

generates a total welfare equal to:

Ŵ
(
λ1(x1), λ

2(x1)
)
= πp(θ1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)−c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)−c(x2, y2)

](
1−λ1(x1)

)
πp(θ2)g(y2)

where θ1 =
g(y1) λ1(x1)+

(
1−g(y1)

)
λ2(x1)

f(x1)
, and θ2 =

g(y1)
(
1−λ1(x1)

)
+
(
1−g(y1)

)(
1−λ2(x1)

)
1−f(x1)

. As in

the complete information, we tremble λ1(x1) by ε1 and λ2(x1) by ε2 such that ε2 ≡

−ε1g(y1)/1−g(y1) ensuring that the market tightness in each submarket remains constant.

The new total welfare is:

Ŵ
(
λ1(x1)+ε1, λ

2(x1)+ε2
)
= πp(θ1)·

[
g(y1) λ

1(x1)S(x1, y1)+
(
1−g(y1)

)
λ2(x1)S(x1, y2)

]
+ πp(θ2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ1)g(y2)−
[
c(x2, y1)− c(x2, y2)

](
1− λ1(x1)

)
πp(θ2)g(y2)

+ ε1g(y1)

{
πp(θ2)

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
− πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]}

Thus, the change in welfare is equal to:

∆Ŵ = ε1g(y1)

{
πp(θ2)

[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
︸ ︷︷ ︸

ZPI(θ1)

}

where θ1 and θ2 are defined as above. Note that ZPI(θ1) is strictly increasing in θ1.

Therefore, ZPI(θmax
1 ) ≥ ZPI(θ1) ≥ ZPI(0) for any θ1 ∈ [0, θmax

1 ] where θmax
1 = 1/f(x1).
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Now, we analyze three cases:

1. Suppose ZPI(θ1) > 0. Then, pick ε1 > 0 with ε2 ≡ −ε1g(y1)/1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 1 or λ̂2(x1) ≡ λ2(x1) + ε2 = 0. In the former case, λ̂1(x2) = 0 and

λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and λ̂2(x2) = 1. In both cases, the

definition of PAM is satisfied.

2. Suppose ZPI(θ1) < 0. Then, pick ε1 < 0 with ε2 ≡ −ε1g(y1)/1−g(y1) such that either

λ̂1(x1) ≡ λ1(x1) + ε1 = 0 or λ̂2(x1) ≡ λ2(x1) + ε2 = 1. In the former case, λ̂1(x2) = 1 and

λ̂2(x2) ∈ (0, 1); and in the latter case, λ̂1(x2) ∈ (0, 1) and λ̂2(x2) = 0. In both cases, the

definition of NAM is satisfied.
3. Suppose ZPI(θ) = 0. We show that an interior randomization device can not be an
equilibrium. To see this, first tremble λ1(x1) by ε1, and calculate welfare:

Ŵ
(
λ1(x1) + ε1, λ

2(x1)
)
= πp(θ̂1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ̂2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ̂1)g(y2)−
[
c(x2, y1)− c(x2, y2)

](
1− λ1(x1)

)
πp(θ̂2)g(y2)

+ ε1g(y1)
[
πp(θ̂1) S(x1, y1)− πp(θ̂2) S(x2, y1)

]
+ ε1g(y2)

{
πp(θ̂2)

[
c(x2, y1)− c(x2, y2)

]
− πp(θ̂1)

[
c(x1, y1)− c(x1, y2)

]}

where θ̂1 = θ1+ ε1g(y1)/f(x1), θ̂2 = θ2− ε1g(y1)/1−f(x1), and θ1, θ2 are defined as above. Now,
let’s tremble λ2(x1) by ε2, and calculate welfare:

Ŵ (λ2(x1), λ
2(x1) + ε2) = πp(θ̃1) ·

[
g(y1) λ

1(x1) S(x1, y1) +
(
1− g(y1)

)
λ2(x1) S(x1, y2)

]
+ πp(θ̃2) ·

[
g(y1)

(
1− λ1(x1)

)
S(x2, y1) +

(
1− g(y1)

) (
1− λ2(x1)

)
S(x2, y2)

]
−
[
c(x1, y1)− c(x1, y2)

]
λ1(x1)π

p(θ̃1)g(y2)−
[
c(x2, y1)− c(x2, y2)

](
1− λ1(x1)

)
πp(θ̃2)g(y2)

+ ε2
(
1− g(y1)

)[
πp(θ̃1) S(x1, y2)− πp(θ̃2) S(x2, y2)

]
where θ̃1 = θ1 + ε2(1−g(y1))/f(x1), θ̃2 = θ2 − ε2(1−g(y1))/1−f(x1), and θ1, θ2 are defined above.

For any small ε1 with ε2 ≡ ε1g(y1)/1−g(y1), it follows that θ̂1 = θ̃1 and θ̂2 = θ̃2. Pick such

ε2. Then, increasing λ1(x1) is marginally more profitable than increasing λ2(x1) if and

only if
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πp(θ2)
[
S(x2, y2)− S(x2, y1) +

g(y2)

g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−πp(θ1)

[
S(x1, y2)− S(x1, y1) +

g(y2)

g(y1)

(
c(x1, y1)− c(x1, y2)

)]
︸ ︷︷ ︸

ZPI(θ1)

≥ 0

Since ZPI(θ̂1) > ZPI(θ1) = 0, then the inequality holds. Therefore, at least one of the

partial derivatives ofW at
(
λ1(x1), λ

2(x1)
)
is non-zero, meaning that

(
λ1(x1), λ

2(x1)
)
at

ZPI(θ1) = 0 is not an equilibrium. This finishes the proof.

C.2 Proof of Proposition 1 under Private Information

We can establish Proposition 1 for the private information case. Let θ̂1 be such that

ZPI(θ̂1) = 0, then the following result holds:

PropositionC.1. In the private information setting, let θ∗∗1 be the equilibriummarket tightness.

(i) If θ∗∗1 > θ̂1 then the equilibrium sorting exhibits PAM. (ii) If θ∗∗1 < θ̂1 then the equilibrium

sorting exhibits NAM. (iii) θ∗∗1 = θ̂1 is never optimal.

Recall S(x, y) is increasing in y, so is ZPI(θ1) simply implying Proposition C.1.

C.3 Proof of Corollary 2

ZPI(θ1) is increasing in θ1 reaching its minimum value at θ1 = 0, and when θ1 = 0

it follows that πp(0) = 1 and θ2 = 1/1−f(x1). Therefore, from Proposition C.1, we can

ensure PAM by imposing that the following inequality must hold:

πp (1/f(x2))
[
S(x2, y2)− S(x2, y1) + g(y2)/g(y1)

(
c(x2, y1)− c(x2, y2)

)]
−

[
S(x1, y2)− S(x1, y1) + g(y2)/g(y1)

(
c(x1, y1)− c(x1, y2)

)]
≥ 0

Now, ZPI(θ1) reaches its maximum value at θ1 = 1/f(x1).Therefore, from Proposition

C.1, we can ensure NAM by imposing that the following inequality must hold:[
S(x2, y2)− S(x2, y1) + g(y2)/g(y1)

(
c(x2, y1)− c(x2, y2)

)]
− πp (1/f(x1))

[
S(x1, y2)− S(x1, y1) + g(y2)/g(y1)

(
c(x1, y1)− c(x1, y2)

)]
≤ 0
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C.4 Proof of Proposition 4

The designer solves the following problem:

max{(
λk(xi),τk(xi)

)2
i=1

}2

k=1

{
2∑

i=1

πc
(
θi
) ∑2

k=1

[
u(xi, yk)− τk(xi)

]
λk(xi)g(yk)∑2

k=1 λ
k(xi) g(yk)

f(xi)

}

subject to [FC], [MT],[PC], and [IC].Wewill analyze the constraints in thismaximiza-

tion problem. First, consider the [IC]s for low- and high-ability parents, respectively:
2∑

i=1

c(xi, y1)
[
λ2(xi)− λ1(xi)

]
πp(θi) ≥

2∑
i=1

[
τ 2(xi) λ

2(xi)− τ 1(xi) λ
1(xi)

]
πp(θi)

2∑
i=1

[
τ 2(xi) λ

2(xi)− τ 1(xi) λ
1(xi)

]
πp(θi) ≥

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θi)

From these inequalities, we get the following expression, andwe continue rearranging:
2∑

i=1

c(xi, y1)
[
λ2(xi)− λ1(xi)

]
πp(θi) ≥

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θi)

⇒ c(x1, y1)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y1)

[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥

c(x1, y2)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ2)

⇒
[
c(x2, y1)− c(x2, y2)

]
·
[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥[

c(x1, y2)− c(x1, y1)
]
·
[
λ2(x1)− λ1(x1)

]
πp(θ1)

Note that λ2(x1)−λ1(x1) = 1−λ2(x2)− [1−λ1(x2)] = λ1(x2)−λ2(x2), hence replacing
in the previous inequality yields:[

c(x2, y1)− c(x2, y2)
]
·
[
λ2(x2)− λ1(x2)

]
πp(θ2) ≥[

c(x1, y1)− c(x1, y2)
]
·
[
λ2(x2)− λ1(x2)

]
πp(θ1) (C.2)

This inequality depends on the sign of the term [λ2(x2) − λ1(x2)], which defines PAM
and NAM. Hence, consider the following cases:
Case 1. Suppose λ2(x2)−λ1(x2) is positive. Then, Equation C.2 reduces to:

[
c(x2, y1)−

c(x2, y2)
]
·πp(θ2) ≥

[
c(x1, y1)−c(x1, y2)

]
·πp(θ1)which is satisfied if the following holds:

c(x2, y2)− c(x2, y1)

c(x1, y2)− c(x1, y1)
≥ 1

πp (1/f(x2))
(C.3)

Case 2. Suppose λ2(x2)−λ1(x2) is negative. Then, Equation C.2 reduces to:
[
c(x1, y1)−

c(x1, y2)
]
·πp(θ1) ≥

[
c(x2, y1)−c(x2, y2)

]
·πp(θ2)which is satisfied if the following holds:
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c(x1, y2)− c(x1, y1)

c(x2, y2)− c(x2, y1)
≥ 1

πp (1/f(x1))
(C.4)

Now, we show that the [PC] for low-ability parents, and the [IC] for high-ability par-
ents imply the [PC] for high-ability parents:

2∑
i=1

[
τ2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) ≥
2∑

i=1

[
τ1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

≥
2∑

i=1

[
τ1(xi)− c(xi, y1)

]
λ1(xi)π

p(θi) ≥ 0

Thus, we can ignore the [PC] for high-ability parents. Next, suppose that the [IC] for
high-ability parents holds with strict inequality:

2∑
i=1

[
τ2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) >
2∑

i=1

[
τ1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

Then, the designer can decrease τ 2(x1) and τ 2(x2) by a small ε > 0 satisfying the

constraint while increasing the objective function. A contradiction. Therefore, the [IC]

for high-ability parents holds with equality at the optimum.

Similarly, suppose that the [PC] for low-ability parents holds with strict inequality:∑2
i=1

[
τ1(xi) − c(xi, y1)

]
λ1(xi)π

p(θi) > 0. Then, the designer can decrease τ 1(x1) and

τ 1(x2) by a small ε > 0 satisfying the constraint while increasing the objective function.

A contradiction. Therefore, the [PC] for low-ability parents holds with equality at the

optimum.

Lastly, we show that the [IC] for high-ability parents combinedwith Equations C.3 and

C.4 imply the [IC] for low-ability parents. Recall the [IC] for high-ability parents:
2∑

i=1

[
τ 2(xi)− c(xi, y2)

]
λ2(xi)π

p(θi) =
2∑

i=1

[
τ 1(xi)− c(xi, y2)

]
λ1(xi)π

p(θi)

⇒
2∑

i=1

[
τ 2(xi)λ

2(xi)− τ 1(xi)λ
1(xi)

]
πp(θi) =

2∑
i=1

c(xi, y2)
[
λ2(xi)− λ1(xi)

]
πp(θi)

The right-hand side of the previous equation can be written as:

c(x1, y2)
[
λ2(x1)− λ1(x1)

]
πp(θ1) + c(x2, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ2)

⇒ c(x2, y2)
[
λ2(x2)− λ1(x2)

]
πp(θ2)− c(x1, y2)

[
λ2(x2)− λ1(x2)

]
πp(θ1)

⇒
[
c(x2, y2)π

p(θ2)− c(x1, y2)π
p(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
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Thus, the [IC] for high-ability parents can be written as:
2∑

i=1

[
τ2(xi)λ

2(xi)− τ1(xi)λ
1(xi)

]
πp(θi) =

[
c(x2, y2)π

p(θ2)− c(x1, y2)π
p(θ1)

]
·
[
λ2(x2)− λ1(x2)

]
Notice there are twopossibilities: Either (i)λ2(x2) > λ1(x2), inwhich case EquationC.3

ensures, after some algebra, that the [IC] for low-ability parents hold; or (ii) λ2(x2) <

λ1(x2), in which case Equation C.4 ensures, after some algebra, that the [IC] for low-

ability parents hold. Therefore, we can drop the [IC] for low-ability parents.

D Appendix: Analysis of Extension

D.1 Continuous Type of Parents

First, let’s rewrite the constraints the designer faces when solving Equation 6:

[FC] τ(x, y) ≥ 0 and λ(x, y) ≥ 0 for all (x, y), and
2∑

i=1

λ(xi, y) = 1 for all y ∈ Y.

[MT] θi =
1

f(x)
·

y∫
y

λ(x, y)g(y) dy , for all i ∈ {1, 2}

[PC]
2∑

i=1

[
τ(xi, y)− c(xi, y)

]
λ(xi, y)π

p(θi) ≥ 0 , for all y ∈ Y.

D.1.1 Proof of Lemma 2

Let λ(x, y) be an arbitrary interior allocation for any y, that is, λ(x1, y) ∈ (0, 1), and

thus λ(x2, y) = 1 − λ(x1, y) ∈ (0, 1) for any y by [FC]. Define a perturbation function

ε : Y → (0, 1) such that
∫

y∈Y
ε(y)g(y)dy = 0.

Consider the allocationsλ(y) ≡
(
λ(x1, y), λ(x2, y)

)
and λ̃(y) ≡

(
λ(x1, y)−ε(y), λ(x2, y)+

ε(y)
)
. Notice, the market tightness derived by allocations λ(y) and λ̃(y) is the same:

θi = 1
f(xi)

·
∫

y∈Y
λ(xi, y)g(y)dy for i = 1, 2. The change in welfare between these two

allocations is:

W (λ̃)−W (λ) ≡ ∆W =

y∫
y

[
πp(θ2)S(x2, y)− πp(θ1)S(x1, y)

]︸ ︷︷ ︸
ẐCI(y|θ)

ε(y)g(y)dy,

where θ = (θ1, θ2). Note that ẐCI(y|θ) is continuous but not necessarily monotone,
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Figure D.1: Change in Welfare - Extension

provided that S(x, y) is continuous in y for all x.

Now, let Figure D.1 be an arbitrary representation of ẐCI(y|θ), and consider ε(y)

defined as follows:

∫
y∈[y,y1]

ε(y)g(y)dy = 0,

∫
y∈[y1,y2]

ε(y)g(y)dy = 0, and
∫

y∈[y2,y]

ε(y)g(y)dy = 0

and more importantly, ∂ε(y)/∂y > 0 for y ∈ Y \ [y1, y2] and ∂ε(y)/∂y < 0 for y ∈ [y1, y2].34

Thus, the change in welfare is:

∫
y∈[y,y1]

ẐCI(y|θ)ε(y)g(y)dy +

∫
y∈[y1,y2]

ẐCI(y|θ)ε(y)g(y)dy +

∫
y∈[y2,y]

ẐCI(y|θ)ε(y)g(y)dy.

Since ẐCI(y|θ) is monotonically increasing over the interval [y, y1] choosing ε(y) to

be monotonic increasing ensures that the first term above is positive. Similarly, each

term can be shown to be positive, which collectively guarantees a welfare improve-

ment over the interior allocation λ(x, y).35 The analysis holds for any interior allocation

λ(x, y) ∈ (0, 1) over any arbitrary subset Y ′ ⊆ Y .

Lemma 2 implies the following: “Given an equilibrium market tightness (θ∗1, θ
∗
2),

the optimal allocation is always on the corner, that is, λ(x1, y) ∈ {0, 1}”. Specifically,

the following yields the optimal allocation:

Corollary D.1. Let θ∗ ≡ (θ∗1, θ
∗
2) be the equilibrium market tightness. Suppose ẐCI(y|θ∗) is

as in Figure D.1. Then the optimal allocation λ∗(x, y) is as follows: λ∗(x1, y) = 1− λ∗(x2, y)

34Please refer to y1 and y2 defined in Figure D.1, here and henceforth.
35Notice, one can always find a such an ε(y) through a very small perturbation around interior λ(x, y).
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and:

λ∗(x2, y) =

 0 y ∈ [y, z1] ∪ [z2, z3]

1 y ∈ [z1, z2] ∪ [z3, y]

for some z1, z2, z3 such that y < z1 < y1 < z2 < y2 < z3 < y as in Figure D.2.

Figure D.2: Optimal Allocation - Extension

Proof. By Lemma 2, a monotone increasing perturbation of λ(y) over the interval [y, y1]

such that
∫

y∈[y,y1]
ε(y)g(y)dy = 0 guarantees that

∫
y∈[y,y1]

ẐCI(y|θ)ε(y)g(y)dy > 0. Since

ε(y) monotone increases and sums up to 0, there exists z ∈ (y, y1) such that ε(y) ≤ 0 if

and only if y ≤ z. This implies λ(x1, y) ≤ λ̃(x1, y) if and only if y ≤ z. Thus, moving

towards PAM only in the interval [y, y1] increases the welfare. Therefore, one can keep

increasing the welfare only over the region [y, y1] by trembling as much as possible,

which proves that there exists z1 ∈ (y, y1) such that λ∗(x1, y) = 1 for y ∈ [y, z1], and

λ∗(x1, y) = 0 for y ∈ [z1, y1]. Analogously, the optimal allocation for other regions

follows. □

D.1.2 Proof of Proposition 5

Notice that, if πp(θ∗)S(x, y) is super-modular given equilibrium θ∗ = (θ∗1, θ
∗
2), then

ẐCI(y|θ∗) is increasing everywhere. Thus, Corollary D.1 implies that the optimal al-

location is such that λ(x1, y) = 1 for y ≤ ŷPAM for some ŷPAM ∈ (y, y), and λ(x1, y) = 0

otherwise. Moreover, given θ∗1 is the equilibrium market tightness in submarket x1,

ŷPAM is such that θ∗1 = G(ŷPAM )/1−f(x2). Proof of part (ii) analogously follows.
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D.1.3 Proof of Corollary 4

Recall ẐCI(y|θ) = πp(θ2)S(x2, y) − πp(θ1)S(x1, y). One can easily see that ẐCI(y|θ) in-

creases in θ1. Taking derivative of ẐCI(y|θ)with respect to y yields the following:

∂ẐCI(y|θ)
∂y

≡ ẐCI
y (y|θ) = πp(θ2)Sy(x2, y)− πp(θ1)Sy(x1, y).

Since Sy(y|θ) > 0, it follows that ẐCI
y (y|θ) also increases in θ1, and thus assigns its

minimum value at θ1 = 0 and θ2 = 1/f(x2). That is, ẐCI
y (y|θ1 = 0, θ2 = 1/f(x2)) ≤ ẐCI

y (y|θ)

for any θ and any y.

Let ỳ := argmin
y∈Y

Sy(x1, y)−πp
(
1/1−f(x1)

)
Sy(x2, y), that is, ỳ is the argument at which

ẐCI
y (y|θ1 = 0, θ2 = 1/f(x2)) assigns its minimum value. Now, notice the following:

πp
(
1/f(x2)

)
Sy(x2, ỳ)−Sy(x1, ỳ) ≥ 0 implies that ẐCI

y (y|θ) ≥ 0 for any θ and any y ∈ [y, y].

As a result, πp(θ∗)S(x, y) is super-modular at equilibrium θ∗, and the optimal sorting

exhibits PAM by Proposition 5(i). Therefore, the planner simply optimizes the welfare

by solving the following problem:

max
ŷ∈Y

πp
(G(ŷ)

f(x1)

) ŷ∫
y

S(x1, y)g(y)dy + πp
( 1−G(ŷ)

1− f(x1)

) y∫
ŷ

S(x2, y)g(y)dy,

which finishes the proof of Corollary 4 (i). The proof of (ii) follows analogously.

D.2 Improvement in the Meeting Technology

Recall the sorting condition under complete information for a given technology πp:

ZCI(θ1|πp) = πp(θ2)
[
S(x2, y2)− S(x2, y1)

]︸ ︷︷ ︸
∆S2

−πp(θ1)
[
S(x1, y2)− S(x1, y1)

]︸ ︷︷ ︸
∆S1

.

If the equilibrium sorting is PAM, then the equilibrium θ∗1 is such that ZCI(θ∗1|πp) >

ZCI(θ1|πp) = 0 and θ∗1 > θ1. Note that
(
πp(θ1)/πp(θ2)

)
=

(
∆S2/∆S1

)
.
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D.2.1 Proof of Proposition 6

Take an arbitrary π̂p ∈ Πp such that πp ▷ π̂p. Notice ZCI(θ1|π̂p) = 0 if and only if(
π̂p(θ1)/π̂p(θ2)

)
=

(
∆S2/∆S1

)
=

(
πp(θ1)/πp(θ2)

)
. It is easy to verify that:

π̂p(θ1)

π̂p(θ2)
≤ πp(θ1)

πp(θ2)
if and only if θ1 ≤ 1,

which holds with equality if θ1 = θ2 = 1. In short, given any market tightness θ1 and

θ2 ≡
(
1−f(x1)θ1

)
/
(
1−f(x1)

)
, the ratio of meeting probabilities in submarkets x1 and x2,

gets flatter as the technology improves (as can be seen in Figure D.3). Thus, a super-

modular S(x, y) implies θ1 < θ1 < θ∗1.

Figure D.3: Monotone Comparative Statics for the Meeting Technology

Recall that the meeting technology gets flatter everywhere at an improved technol-

ogy, that is, let ∂πp(θ)/∂θ ≤ ∂π̂p(θ)/∂θ for any θ ∈ [0,min{1/f(x1), 1/1−f(x1)}] given f(x1). We

also know that ∂W(λ1(x1),λ2(x1))/∂λk(xi) is monotonically decreasing for any i = 1, 2 and

any k = 1, 2 (see Lemma B.1 in the online supplement). Given πp, let θ∗i = min{θ∗1, θ∗2}

and thus θ∗i ≤ 1 ≤ θ∗j . Therefore,

∂W (λ1(x1), λ
2(x1))

∂λk(xi)
|θi=θ∗i

= 0 ≥ ∂W (λ1(x1), λ
2(x1))

∂λk(xi)
|θi=1

for some k = 1, 2.36 The inequality becomes strict unless min{θ∗1, θ∗2} = max{θ∗1, θ∗2}.

Suppose that is the case from now on.

Thus, at equal market tightness where the parents-to-children ratio is equal to 1

in both market, the designer would like to allocate some of type-k parents into sub-
36For a supermodular S(x, y), consider the corner (λ1(x1), λ

2(x1)) that exhibits PAM and θ1 = 1 = θ2;
that is, either λ1(x1) = 1 and λ2(x1) ∈ [0, 1), or λ1(x1) ∈ (0, 1) and λ2(x1) = 0. Consider analogous λ’s
for submodular S(xi, yj).
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market xj because ∂W (λ)/∂λk(xi)|θi=1 < 0. Doing so will have two effects: congestion and

decongestion effects, which link to the probability ofmeeting given the technology, and

the surplus effect. Notice the surplus effect is linear, whereas the meeting technology

is convex. Hence, decreasing λk(xi) at θi = 1 increases the probability of meeting in

submarket-xi and decreases in submarket-xj at different and non-constant rates.

Now, for an improved technology π̂p defined above, the congestion and deconges-

tion effects become less pronounced, leading to less divergence from the equal market

tightness θi = 1 = θj . Let θ∗∗i be the equilibrium market tightness with π̂p. Therefore,

|1− θ∗∗i | < |1− θ∗i |, which simply implies θ1 < θ∗∗1 . The proof follows analogously for a

submodular S(x, y) and NAM.
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